
 

The Impact of STEM Experiences on Student Self-Efficacy in Computational 

Thinking and Computer Science 

Abstract: Since the introduction of new curriculum standards at K-12 schools, 

computational thinking has become a major research area.  Creating and 

delivering content to enhance these skills, as well as evaluation, remain open 

problems. This paper describes two different interventions based on the Scratch 

programming language which aim to improve student self-efficacy in computer 

science and computational thinking.  The two interventions were applied at a 

STEM outreach program for 5th-9th grade students.  Previous experience in 

STEM related activities and subjects, as well as student self-efficacy, were 

collected using a developed pre- and post-survey. We discuss the impact of our 

intervention on student performance and confidence, and evaluate the validity 

of our instrument. 

Keywords: computational thinking, self-efficacy, computer science, design 

Introduction 

The Next Generation Science Standards (NGSS) (2013)22 and Common Core Standards 

(CCSS) (2010)19 have influenced a STEM movement with ever-increasing needs for 

Computational Thinking (CT).  CT has been defined in a variety of ways, but discussion 

between researchers on what the definition of CT should include was born from Wing’s vision 

to make CT a fundamental skill for everyone, not just computer scientists32. Computational 

Thinking: A Digital Age Skill for Everyone (2011)2 emphasizes the importance of Wing’s vision 

and notes the significance of CT as a vital 21st century skill, which is noted in the P21 

Framework for 21st Century Learning23.  Not all definitions of CT are created equal; however, 

among various definitions2,3,20,29,32, abstraction and algorithms are two main concepts that 

everyone agrees upon.  More so, Bar and Stephenson point out that whatever an educator’s 

interpretation or definition of CT includes, it “must ultimately be coupled with examples that 

demonstrate how computational thinking can be incorporated in the classroom3”.  This leads 

to a conclusion that K-12 educators do understand the importance of CT skills; however, they 

lack a clear, practical definition with established pedagogy to help bring CT to their 

classrooms2,3.  Solving this problem would also remove the preconceived notion that 

computational thinking is Computer Science (CS) or computer programming, and show 

educators that CT is a skill used across many disciplines5,27,29,32. 



 

Not only is CT needed for the K-12 student body, but also for existing and up and 

coming teaching professionals.  This paper describes a summer STEM institute where the 

Manhattan-Ogden Unified School District 383 has partnered with the Department of Education 

at Kansas State University.  The STEM institute is a month long outreach program designed to 

engage, excite, and teach 5th-9th grade students science, technology, engineering, and math 

through various classes and activities ranging from food science and agriculture, to computer 

science and robotics.  During this institute, groups of pre-service teachers from the university 

are paired with experienced K-12 educators from the school district, or instructors/professors 

from the university, who run the different classes.  This provides a practical scenario for 

education students to gain hands-on experience in a classroom setting, while also learning 

innovative ways to incorporate STEM into their future classrooms.   

The focus of this paper covers two new interventions with similar pedagogy 

implemented for the institute which focuses on video game design and robotic agents.  Each 

intervention used the visual programing language Scratch (2009)26 as a tool in order to seed 

CT and CS concepts in both institute participants and pre-service teachers.  We also describe a 

self-efficacy instrument used to measure STEM experiences, 21st century learning skills, and 

CT.  The importance of this research is to discover whether or not past STEM activities and 

experiences will transfer to student self-efficacy in CT, as well as develop a method for 

delivering and measuring CT skills in the K-12 environment. 

Background 

Visual based programming tools have become largely popular due to their ease of use for 

beginner programmers in not only K-12, but also higher education.  These block-based 

programming languages have made their way into many STEM outreach programs in order to 

train both students and educators.  Code.org (2015)10 has been a major leader advocating for 

CS in the K-12 classroom by providing materials for educators, as well as providing interactive 

tutorials on programming using Blockly14.  Most recently, Code.org released two new 

programming tutorials themed around the popular game, Minecraft, and up and coming release 

of Star Wars VII.  Outreach programs have a large range of focus.  Scalable Game Design 

(SGD), for example, developed CT tools using AgentSheets and AgentCubes which enabled 

middle school students to develop video games25.  The tools increased student understanding 

of CT concepts, which then allowed them to apply their new skills on scientific simulations, 

not just video games.  More importantly, Repenning et al measured student’s learning of CT 

as patterns rather than concepts.  This led to an automatic analysis tool using latent semantics 

to determine student growth in CT. While still using block-based programming tools, another 

outreach program, GK12 INSIGHT, worked with K-12 teachers and graduate students, to 

incorporate embedded systems and sensor technology with emphasis on CT in K-12 

curriculum21. Other researchers have focused on creating various outreach programs, such as 

CS4HS, that emphasize training teachers in computer science8.  Another CS4HS workshop 

focused on the measurement of the ability of teachers to incorporate CT concepts into lesson 

plans9.  While Bort & Brylow developed a rubric for general CT concepts (i.e. abstraction, 

algorithms, etc.), they did not measure the teacher’s own understanding of CT. Further 

expanding, Bean et al developed a two-part self-efficacy survey for a pre-service teacher 

training program4. The first measured the pre-service teachers’ confidence that they are capable 

of incorporating computer programming into their classroom, as well as recognizing how 

programming concepts relate to NGSS and CCSS.  The second survey delved into their self-

efficacy in their understanding of CT concepts in relation to programming.  In another related 



 

project, Bell conducted a CT intervention as part of an art-based program component of a 

summer STEM institute; his experimental approach served as a basis for this work5. 

Methods 

While our interventions vary in theme, both center on the same learning and scaffolding theory.  

One of the major challenges of teaching CT concepts through computer programming in both 

K-12 and higher education environments is that students quickly become overwhelmed with 

learning a new language.  By starting with text-based languages, beginning programmers spend 

more time struggling with the syntactic structure of programming languages instead of learning 

the core concepts like algorithms, abstraction, and data analysis. By using Scratch, a block-

based language, students can learn the language quickly.  This allows us to focus more on 

teaching CT concepts, rather than giving drawn out instructions on how to use the programming 

language.  This is especially important since, like most outreach programs and school districts, 

we have an extremely limited time to work with students about CT and CS. 

By using a block-based programming language, we are effectively reducing the 

students’ cognitive load. Cognitive Load Theory (CLT) (2010)24 summarizes that an 

individual’s ability to learn is compromised when the intake of a learning task exceeds their 

working memory capacity.  Morrison et. al. developed sub goal labels in worked examples 

which reduced cognitive load in text-based programming18.  We take a similar approach by 

using seed Scratch programs for our intervention activities.  The seed programs are partially 

completed.  This skeleton allows us to outline the structure of the program and complete low 

learning potential portions of the program (for example, have sprites, costumes, and 

backgrounds already created), which allows us to focus on any new CT skills or computer 

science principles in a limited timeframe while reducing cognitive load. 

We continue to reduce the cognitive load, specifically extraneous load (2015)18, by 

putting scaffolding in place for each activity or project in the interventions.  Scaffolding is a 

support structure put in place for learners to accomplish tasks that they could otherwise not 

complete7.  We take the approach of instructional scaffolding which correlates to programming 

tutorials.  However, as Repenning notes, direct instruction can actually limit student 

motivation, especially in females25.  We utilize Problem-based Learning (PBL) (2009)28 

alongside Inquiry Learning (IL) to keep students motivated. Kirschner argues that PBL and IL 

do not provide enough guidance for students to learn based on human cognition (2006)17; 

Hmelo-Silver refutes this statement by providing evidence that PBL and IL have enough 

scaffolding to be effective learning practices16. Our coding activities in day one use mostly 

direct instruction scaffolding (step-by-step instruction of what blocks to use), but as the class 

progresses into later projects, we move into using guided discovery or inquiry-based learning, 

which has been shown to increase student abilities in scientific literacy15,33 as well as students’ 

motivation to learn25.  As we move through the intervention, we also make use of PBL.  This 

allows us to let students who are progressing quickly in activities to work ahead or on their 

own while we assist others who are struggling.  By asking the students questions about the task, 

often relating it to real world or previous classroom experiences, they will often discover how 

to use the blocks available to them in Scratch to solve the task.  Throughout the intervention, 

we keep removing scaffolding until the last day where students are tasked with their final 

project. 

The goals of our methodology is to maximize the increase in student self-efficacy.  Self-

efficacy can be defined as “an individual’s belief that they can accomplish a particular task”4.  



 

Measuring self-efficacy relative to CS and even more so in CT is required, because there does 

not yet exist any widely-adopted standardized assessments which measure student progress 

(apart from AP CS).  Bandura notes that self-efficacy can by improved through enactive 

attainment, vicarious experiences, verbal persuasion, and psychological state1.  By using PBL 

we enable the students to achieve tasks on their own without direct instruction.  This relates to 

enactive attainment (individual mastery of skills), although we have to structure problems 

carefully so that they are not too easy (students will get bored) or too difficult (increased 

anxiety).  This is also referred to as the zones of proximal flow and development25.  Verbal 

persuasion occurs in our intervention through IL.  Though IL is indirectly guiding the student 

(asking the right questions), we are able to convince students that they are able to solve the 

tasks at hand, whether it’s difficulty with a CT concept or a technical problem with placing the 

correct blocks in Scratch.  Vicarious experiences are achieved through group activity.  During 

activities, students are encouraged to talk to their neighbors about how they solved the 

programming tasks, and in others, students are partnered up for group projects.  Finally, a stable 

psychological state is achieved through our scaffolding and use of a block-based language to 

reduce the cognitive load.  By designing our interventions around Bandura’s methods of 

improving self-efficacy, we craft powerful and achievable learning experiences. 

Mission to Mars 

Students in the lower grade levels (5th, 6th, and 7th grade) attended a program called Mission to 

Mars.  The goal of this intervention design was to introduce students to CT through many 

different activities revolving around tasks that must be completed to send an autonomous rover 

to Mars.  Each session of the program consisted of four days of activities (each day being 3 

hours long). 

 The first day was primarily an introduction to the Scratch visual programming 

language.  The students were led through many short activities to familiarize themselves with 

the language, culminating in a challenge to draw regular polygons (2015)4 using methods very 

similar to the turtle graphics features of the classic Logo programming language. As the 

students slowly built shapes with more sides, concepts such as iteration, variables, user input, 

and mathematical operators were introduced, leading to a generalized program that could draw 

any regular polygon.  We also briefly introduced the fact that this program demonstrated a 

fundamental theory of calculus. 

 The second day focused on using computers to simulate real-world ideas. The students 

began by playing with human-powered compressed air rockets (Stomp Rockets).  While doing 

so, they plotted the distance each rocket traveled and discussed reasons for the wide variance 

of results.  This led to a discussion of the scientific method, independent and dependent 

variables, and how to design an accurate experiment. Afterwards, students were led through an 

activity to simulate a rocket’s trajectory in Scratch, using the launch angle as the independent 

variable.  With that knowledge, students were introduced to high-performance computing as a 

way to solve even bigger problems, such as the trajectory of a real rocket, and were given a 

guided tour of a nearby supercomputer.  Students then learned how to create a simple acceptor 

finite state machine that accepts a secret key though a series of clicks. 

 The third day introduced the concept of artificial intelligence (AI). First, students were 

led through a project to recreate three of the four enemy AI ghosts from the classic Pac Man 

arcade game.  In doing so, they were introduced to a two-step artificial agent pattern of 

perceiving the environment and acting based on that perception.  Following that, students were 



 

assigned an activity to explain how more complex AI, such as neural networks, can be trained.  

After completing that activity, the students were introduced to the final project: building an AI 

for an autonomous Mars rover.  The concept was first shown to them as a game, where they 

were challenged to get the highest score possible.  This required planning ahead to find the best 

path and learning how the rover operates.  These activities drew on many areas of CT, including 

modeling and simulation, abstraction, and data representation. 

 On the fourth day, the rover was re-introduced as a game, but this time the rover could 

only see the squares immediately adjacent to it.  This required students to “sense” their 

surroundings and act based on limited information, just as the rover would.  This helped 

reinforce the “perceive” phase of an artificial agent and forced the students to adjust their 

thought process to match that of an algorithm.  Finally, the students were given a rover project 

that allowed them to build an AI following the perceive-and-act model previously used.  They 

worked independently but with some guidance on how to build the best rover AI possible, and 

compared their results with other students. 

Game Design 

The second intervention was for the 8th and 9th grade students.  This intervention focused on 

video game design within Scratch. While game design contains a significant amount of 

established theory, we focused only on a small subset of common principles of game design 

inspired by 100 Principles of Game Design11 and a popular YouTube series27.  While the 

delivery focus of this intervention was game design principles, we used the development of 

different games in Scratch to teach CT concepts.  Like Mission to Mars, this program consisted 

of four days of activities. 

Day one began with an introduction to game design principles.  These consisted of 

seven principles: (1) Principle of isolation: introducing new elements in a way that allows 

players to familiarize with new enemies or mechanics before they are set in a real situation. (2) 

Principle of accomplishment: gives players a sense of motivation and direction either through 

story progression or the mastering of skills. (3) Teach without teaching principle:  help players 

learn by doing instead of relying on step-by-step tutorials. (4) Growing stronger principle: a 

game storyline can often be rewarding alone; however, progression can be improved by letting 

the player grow stronger and accomplish tasks that they could not earlier in the game. (5) Silent 

storytelling principle:  allow the player to experience the story for themselves instead of having 

it spelled out. (6) Hidden reward principle:  give the player extras (bonus levels, collectables, 

etc.) to add an extra feeling of accomplishment beyond the original gameplay/story. (7) Balance 

principle:  gameplay must have a good balance between boredom and anxiety to keep the player 

interested and coming back. We chose these principles due to their relation to educational 

theory and how our scaffolding is constructed.  Examples of these principles were discussed in 

popular video games.  Students were also asked to give examples of the principles from games 

that they play at home.  This discussion was followed by an introduction to scratch using shapes 

as mentioned in day one of the Mission to Mars intervention. Students were then asked to split 

off into pairs or groups of three to brainstorm their own game for as a final project of the course. 

 The second day focused on introducing basic AI concepts, an important aspect of video 

games.  Students were asked to think about what it means to be intelligent.  Most responses 

tended to be things like “smart.”  After describing intelligence as reasoning, problem solving, 

ability to construct knowledge, planning, learning, and perception (of which all relate back to 

the core concepts of CT), students were presented with the Turing test and how computers 



 

could be considered “intelligent.”  We discussed the importance of AI in video games and 

began the first game tutorial called Cat and Mouse.  This is a partially completed game where 

students are walked through implementing a basic AI for a cat that chases a mouse, the player, 

which tries to eat pieces of cheese.  After they had a working game, students were presented a 

problem to improve the AI to exhibit more complex behavior.  As a follow up, we worked with 

the students to complete the starter AI for the game Strikers 1945.  The day ended with time 

for students to complete storyboards for their final project. 

 The theme of day three was dungeon crawlers, a classic game style.  To demonstrate 

this, students were given a starter project for One Tap Quest, a simple, yet popular dungeon 

crawler/RPG. This game was used to illustrate all of the game design principles taught since 

the first day.  One Tap Quest requires only a single click from the player and their hero starts 

off on a quest through a randomized set of enemies to slay for experience and power-ups to 

collect before reaching the boss.  We walked students through setting up randomization of the 

first level of monsters.  They were then tasked with adding another level of monsters, as well 

as a power-up.  The rest of the day was left for students to work in their group on their final 

project.  Before students left for the day, a discussion was led on career options in the video 

game industry. 

 The final day was reserved time for groups to work on their projects while we walked 

around to assist.  At the end of the day, groups got up in front of the class to demonstrate their 

games and describe what game design principles they used.  Groups were allowed to use any 

of the seed projects used any of the previous days, as long as they added additional content or 

mechanics.  Some groups did use the seed projects, but most designed their own game and used 

what they learned from programming the seed projects as the basis for their mechanics.  To 

encourage the students to continue to collaborate, all projects from each week were added to a 

Scratch studio. 

Table 1: Number of students (after survey exclusion) in each intervention 

 Mission to Mars Game Design Total 

Grade Level 5th 6th 7th Total 8th 9th Total 

Week 1 0 8 5 13 8 2 10 23 

Week 2 3 7 3 13 6 3 9 22 

Week 3 1 9 6 16 6 5 11 27 

Week 4 0 5 3 8 5 6 11 19 

Total 4 29 17 50 25 16 41 91 

Instrument Design 

We developed a hybrid instrument, combining the questions 6-17 from the Self-Efficacy for 

Computational Thinking (SECT) survey (with the addition of a question about Boolean 

operations) (2015)4 with questions extracted from the math (27, 28, 31,and a new question: “I 

can apply math concepts to other subjects”), science (35-37, 40, 42), engineering and 

technology (44 – changed products to things, 45, 50-52), and 21st century skills (38, 44, 46, 48, 

and a new question “I am confident I can manage my time wisely when working in a group”) 

sections in a survey built for measuring attitudes towards STEM12.  The new questions were 

added for better coverage of our interventions.  Additional questions were asked about the 

student’s previous experience in STEM activities (if they attended this institute before or any 

other STEM-related outreach activities), as well as whether they had previous experience 



 

programming in the Hour of Code, Scratch, Blockly, TouchDevelop, text-based languages, or 

any other computer language.  A teacher survey was also created in a similar fashion by 

extending the Teacher Self-Efficacy for Computational Thinking (TSECT) survey from 

(2015)4 to include teachers’ background in STEM activities, interest in teaching STEM, and 

experiences with programming languages.  The full surveys are excluded from this paper in 

interest of length and can be produced upon request, although an abbreviated, partial list of 

questions can be found in Table 3. 

 Pre-surveys were administered online at the beginning of each week long session.  The 

post-survey (excluding initial background questions) was given on the last day of each session 

(day four) after ending discussions.  While both the student survey and the teacher survey were 

optional, the student survey was administered during each session, and the teacher survey was 

only emailed each session.  Out of 94 surveys sent to all educators and pre-service teachers 

involved with the institute, only 33 responded to the pre-survey and fewer than 10 responded 

each week for the post-survey.  For this reason, results for the teacher survey are excluded from 

analysis.  Student response rate (after exclusions) can be seen broken down in Table 1.  Out of 

101 student respondents, 7 were excluded for not taking the post-survey (absent those days), 

one was excluded for not taking the pre-survey (absent), and two were excluded for incomplete 

surveys (the missing data in these responses were classified as MCAR). The reliability of our 

instrument was confirmed with a Chronbach’s Alpha of .908. 

Findings 

Overall, both interventions showed a statistically significant (𝑝 <  .001) positive gain in CT 

concepts from the pre-survey (𝑀 = 52.39, 𝑆𝑇𝐷 = 27.7) to the post-survey(𝑀 =
64.76, 𝑆𝑇𝐷 = 21.3). From each intervention we gathered background information in STEM, 

including programming experience as seen in Table 2.  Surprisingly, over 30% of students had 

been exposed to a text-based programming language.  Over 59% of students had experienced 

some sort of block-based programming language, and half had participated in the Hour of Code.  

Less than half of those who participated in the Hour of Code (which is written using the Blockly 

language) knew that they were using Blockly.  From students who had previously attended 

some sort of STEM program before the institute, 70% of them had used Scratch.  This shows 

that most outreach programs in this geographic area highly favor the Scratch language. With 

more than 80% of students having used some programming language, it shows that all students 

are being exposed as much to computer programming at home or school as those who 

participated in outreach programs.  However, the low level of exposure is reflected in the self-

efficacy in CT concepts.   

Students who had previously attended outreach programs improved more in CT 

concepts such as algorithms, procedures, parallelization, data collection, and data 

representation, as shown in Table 3 (this includes students who attended this particular institute 

before as well as those who attended other outreach programs).   

This hints that even though both samples of students had about the same amount of experiences 

using programming languages, STEM outreach programs have better success in seeding CT 

skills in students, compared to exposures in school or at home.   



 

Table 2: Programming experience before the interventions 

 

Any 

Language 

Hour 

of 

Code 

Scratch Blockly TouchDevelop 

Text-

based 

Other 

No 

Previous 

Attendance 

in STEM 

Programs 

(37 

students) 

83.78% 51.35% 56.76% 18.92% 16.22% 35.14% 35.14% 

Previous 

Attendance 

in STEM 

Programs 

(54 

students) 

81.48% 51.85% 70.37% 20.37% 18.52% 35.19% 31.48% 

Overall – 

Mission to 

Mars 

84.00% 52.00% 58.00% 18.00% 16.00% 32.00% 34.00% 

Overall – 

Game 

Design 

80.49% 51.22% 60.98% 21.95% 19.51% 39.02% 31.71% 

 

Table 3: Comparison of effect sizes for the 21st century learning and CT focused questions 

Abbreviated Question 

No Previous 

Attendance in 

STEM Programs 

Previous 

Attendance in 

STEM 

Programs 

Overall 

Mission 

to Mars 

Game 

Design 

Math is my worst subject -.132 0 -.117 .024 

Consider a career that uses 

math 

.264 .127 .156 .215 

Perform well in other 

subjects, but not math 

-.193 .050 -.125 .044 

Apply math to other 

subjects 

.058 .020 .129 -.079 

Consider a career in math .138 .151 .143 .149 

Like to imagine creating 

new things 

.036 .098 -.106 .291 

If I learn engineering, I can 

improve things people use 

everyday 

.191 .196 .165 .230 

Would like to use 

creativity and innovation in 

my future work 

.087 .199 .064 .262 



 

Math and science together 

will help me invent useful 

things 

.251 .064 .255 0 

I can be successful in a 

career in engineering or 

technology 

.113 -.039 -.021 .077 

Lead others to accomplish 

goals 

.501 -.023 .198 .181 

Work well with others who 

have different backgrounds 

and opinions 

-.033 .135 .097 .030 

Make changes when things 

don’t go as planned 

.036 .098 .132 0 

Manage my time wisely 

when working on my own 

.027 .074 .060 .048 

Manage my time wisely 

when working in a group 

.088 .141 .153 .0798 

Executes a sequence of 

commands 

.352 .632 .496 .546 

Uses loops to repeat 

commands 

.641 .785 .683 .779 

Responds to events  .259 .539 .584 .231 

Parallelism .482 .656 .556 .621 

Conditional commands .498 .508 .582 .408 

Perform math operations  .265 .387 .481 .162 

Perform Boolean 

operations 

.606 .626 .626 .608 

Store, update, and retrieve 

values 

.405 .550 .429 .568 

Ask user for input .292 .694 .537 .522 

Iterative development .331 .417 .322 .456 

Frequent tests/debugging .519 .481 .533 .452 

Share and collaborate with 

programs 

.337 .573 .445 .517 

Break program into parts .537 .412 .448 .482 

 

One could say as well that since the students who attended STEM programs previously had 

more exposure to Scratch (70.37% vs. 56.76%), they were able to move more quickly through 

our activities and focus more on learning CT concepts rather than the language itself.  Students 

who had not attended STEM programs previously showed higher pre-survey self-efficacy than 

those who had.  We hypothesize that since they may not have been exposed to CT as much, 

this led to overconfidence, which is reflected in the amount of improvement when looking at 

post-surveys.  By comparison with the overall program, the two interventions were less 

distinguishable, though students in Mission to Mars had a strong improvement in self-efficacy 

in writing programs that respond to events and for being able to perform math operations in 

their programs.  However, after inspecting mean pre- and post-survey responses, the mean pre-

survey self-efficacy for Mission to Mars in these questions was much lower than that of the 

Game Design intervention, although the mean post-survey responses were nearly equivalent.  



 

This verifies that even though the topic of interest in each intervention is different (as well as 

the age groups), the end results for both are comparable. 

When looking at 21st century learning skills, improvements were less noticeable as most 

of our students came in with high confidence in these areas. For example, over 80% of students 

came into our sessions highly confident in math, which led to little improvement.  However, 

students who had previously not attended STEM outreach programs showed stronger 

improvement for their value of math and science in inventing new things.  Leadership also 

showed a strong improvement in these students, which reveals that the STEM outreach 

programs are doing well in improving student confidence in leading others to accomplish goals.  

Only weak improvements are present when comparing the two interventions, though Game 

Design had slightly stronger results in imagination and creativity.  This is due to the fact that 

the Game Design intervention offered more room for students to create and implement their 

own ideas in their final project video game. 

Conclusions and Future Work 

In this paper, we discussed two novel interventions applied during a 5th-9th grade summer 

STEM institute.  Though both interventions differed in topics (video games vs. Mars rover), 

they showed similarly strong improvements in student self-efficacy in CT concepts.  This 

pedagogy shows that it has a positive impact how CT concepts are delivered through CS and 

computer programming at the K-12 level.  Likewise, by expanding the survey done by Bell, 

we were able to gain more insight into specific CT concepts learned by students in a similar 

environment5.  Furthermore, we were able to reveal some lasting impacts that STEM outreach 

programs have on students who continue to stay active in science, technology, engineering, and 

math activities.  These students who have participated in the outreach programs show greater 

capacity in improving their CT skills over those who have not.  This important finding cannot 

be explained completely with data we collected, though we have made hypotheses, and 

warrants further investigation through revised instruments or longitudinal studies.  Background 

survey questions also revealed that the STEM outreach in our areas (apart from this summer 

institute) does not have large participation by upper middle school and high school students 

(19 students in 5th-7th grade vs 4 students in 8th-9th).   

Future work will include ways of improving advertisement of other outreach programs 

to reach a wider audience.  MOOCs are also a future possibility as they have shown promise 

in other research13,30.  In order to dive deeper in understanding transfer and self-efficacy of CT, 

our future work will also include studying the move from block-based to text-based 

programming language31.  We also learned from our survey administration, that we need to use 

a different medium in giving educator assessment surveys.  Based from the administration of 

the student surveys, we believe rewording questions to be friendlier for lower grade levels will 

help with levels of overconfidence in pre-survey responses. 

Acknowledgements 

We would like to thank Jesse Peters and Brooke Snyder, our K-12 in-service teachers, as well 

as the pre-service students who observed and assisted our classes.  Many thanks are also 

extended to the large number of staff at USD 383 for organizing this event.  This research was 

made possible by the Department of Defense Education Activities grant “STEMing into 

College and Career Readiness.” This material is also based upon work supported by the 

National Science Foundation under Grant No. 0948019. Any opinions, findings, and 



 

conclusions or recommendations expressed in this material are those of the authors and do not 

necessarily reflect the views of the National Science Foundation. 
 

 

 

References 

1. Bandura, A. (1982). Self-Efficacy Mechanism in Human Agency. American Pyschologist, 37(2), 122-147. 
2. Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking : A Digital Age Skill for Everyone. 

Learning & Leading with Technology, 5191, 20-23. 

3. Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What 

is the Role of the Computer Science Education Community ? ACM Inroads, 2(1), 48-54. 

4. Bean, N., Weese, J. L., Feldhausen, R., & Bell, R. (2015). Starting From Scratch: Developing a Pre-Service 

Teacher Program in Computational Thinking. Frontiers in Education. 

5. Bell, R. S. (2014). Low Overhead Methods for Improving Capacity and Outcomes in Computer Science. 

Manhattan, KS: Kansas State University. 

6. Bennett, V., Ioannidou, A., Repenning, A., Kyu Han, K., & Basawapatna, A. (2011). Computational 

Thinking Patterns. American Educational Research Association. 

7. Bliss, J., & Askew, M. (1996). Effective Teaching and Learning: Scaffolding Revisited. Oxford Review of 

Education, 22(1), 37-62. 

8. Blum, L., & Cortina, T. J. (2007). CS4HS: An Outreach Program for High School CS Teachers. 

Proceedings of the 38th SIGCSE technical symposium on Computer science education , (pp. 19-23). 

9. Bort, H., & Brylow, D. (2013). CS4Impact: measuring computational thinking concepts present in CS4HS 

participant lesson plans. Proceeding of the 44th ACM technical symposium on Computer science 

education.  

10. Code.org. (2015). Code.org. Retrieved from https://code.org 

11. Despain, W. (2013). 100 Principles of Game Design. New Riders. 

12. Faber, M., Unfried, A., Corn, J., & Townsend, L. W. (2012). Student Attitudes toward STEM: The 

Development of Upper Elementary School and Middle / High School Surveys. Friday Institute for 

Educational Innovation. 

13. Falkner, K., Vivian, R., & Falkner, N. (20015). Teaching Computational Thinking in K-6: The CSER 

Digital Technologies MOOC. Australian Computing Educaiton Conference, 27-72. 

14. Google. (2015). Retrieved from Blockly: https://developers.google.com/blockly/ 

15. Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of Inquiry-based Learning on 

Students’ Science Literacy Skills and Confidence. International Journal for the Scholarship of 

Teaching and Learning, 3(2). 

16. Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and Achievement in Problem-

Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006). Educational 

Psychologist, 42(2), 99-107. 

17. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why Minimal Guidance During Instruction Does Not 

Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and 

Inquiry-Based Teaching. Educational Psychologist, 41(2), 75-86. 

18. Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, Context, and Worked Examples in 

Learning Computing Problem Solving. Proceedings of the eleventh annual International Conference 

on International Computing Education Research - ICER '15 (pp. 21-29). Omaha, NE: ACM. 

19. N. G. (2010). Common Core State Standards. Washington, DC: Authors. 

20. National Academy of Sciences. (2010). Report of a Workshop on The Scope and Nature of Computational 

Thinking. National Academies Press. 

21. Neilsen, M. L., Shaffer, J., & Johnson, N. (2015). Time Lapse Photography for K-12 Education. Int'l 

Frontiers in Education: CS and CE, 201-207. 

22. NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: 

The National Academies Press. 

23. P21 Partnership for 21st Century Learning. (2015, November). Retrieved from http://www.p21.org 

24. Plass, J. L., Moreno, R., & Brunken, R. (2010). Cognitive Load Theory. Cambridge University Press. 

25. Repenning, A., Webb, D. C., Kho, K., Nickerson, H., Miller, S. B., Brand, C., . . . Repenning, N. (2015). 

Scalable Game Design: A Strategy to Bring Systemic Computer Science Education to Schools though 

Game Design and Simulation Creation. ACM Transactions on Computing Education, 1-31. 



 

26. Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., . . . Kafai, Y. 

(2009). Scratch: Programming for All. Communications of the ACM, 52(11), 60-67. 

27. s. G. (2015). Snowman Gaming: Home of Good Game Design. Retrieved from YouTube: 

https://www.youtube.com/channel/UCmY2tPu6TZMqHHNPj2QPwUQ 

28. Savery, J. R. (2009). Overview of problem-based learning: Definitions and Distinctions. Interdisciplinary 

Journal of Problem based Learning, 1(1), 269-282. 

29. Sengupta, P., Kinnebrew, J. S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-

12 science education using agent-based computation: A theoretical framework. Education and 

Information Technologies, 18(2), 351-380. 

30. Spradling, C., Linville, D., Rogers, M., & Clark, J. (2015). Are MOOCs an appropriate pedagogy for 

training K-12 teachers computer science concepts? Computing Sciences in Colleges, 30(5), 115-125. 

31. Weintrop, D., & Wilensky, D. (2015). Using Commutative Assessments to Compare Conecptual 

Understanding in Block-based and Text-based Programs. Proceedings of the eleventh annual 

International Conference on International Computing Education Research - ICER '15, 101-110. 

32. Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. 

33. Wu, H.‐K., & Hsieh, C.‐E. (2006). Developing Sixth Graders’ Inquiry Skills to Construct Explanations in 

Inquiry‐based Learning Environments. International Journal of Science Education, 28(11), 1289-1313. 

 

 


