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Abstract: The ever-growing popularity of computer science has fostered the 

need for computational thinking (CT), especially in K-12 education.  Pedagogy 

that infuses CT, as well as reliable methods for assessing CT, remain open 

problems.  In this paper, we describe a 5th-9th grade STEM outreach program.   

Classes on micro controllers and computer programming are presented.  Data 

collected through a newly designed self-efficacy instrument is used to 

determine effectiveness of these curricula at improving confidence in CT and 

problem solving skills. 

Introduction 
This paper describes a STEM outreach program where the Manhattan-Ogden Unified School 

District 383 has partnered with Kansas State University.  This program lasts four weeks and is 

designed to expose 5th-9th grade students to STEM careers and subjects through hands-on 

activities.  The program covers a large range of areas, including robotics, computer 

programming, agriculture, food science, unmanned aerial vehicles, clean energy, and 

construction science.  Professional educators are paired with small groups (2-4) of pre-service 

teachers to run each class (maximum size of 18).  This allows pre-service teachers to get 

practical, hands-on experience, as well as to learn new STEM activities to include in their 

own future classrooms.  This also gives an excellent teacher to student ratio, providing a one-

on-one learning experience for program participants. We focus, however, on measuring the 

impact of two classes on the program participants.  Each class employed similar pedagogy 

and the Scratch (2009)17 programming language. One relied heavily on computer science 

theory and space exploration as a theme, and the other used micro controllers as the 

foundation for activities.  The goals of this research are as follows: 1. Develop effective 

curricula for improving student self-efficacy in CT, 2. Develop a reliable and effective way 

of measuring student self-efficacy in CT, and 3. Enforce the notion that CT is not problem 

solving (PS), but a component of cognition. 

Background and Related Work 
“Computational thinking involves solving problems, designing systems, and understanding 

human behavior, by drawing on the concepts fundamental to computer science”26. However, 

computational thinking (CT) is not intended to be equated to computer science; rather the 

essence of CT comes from thinking like a computer scientist when faced with problems from 

any discipline8.  Wing expanded the definition of CT in 2011, mentioning that CT is “the 

thought process involved in formulating problems and their solutions so that the solutions are 

represented in a form that can be effectively carried out by an information processing 

agent”27. The inclusion of intelligent agents in what embodies CT creates a pathway to 

inclusion in multiple disciplines by means of scientific simulation and real-world problem 

sets.  In a report by the Royal Society, the need to incorporate CT in curriculum is 

emphasized and defined as “the process of recognizing aspects of computation in the world 

that surrounds us, and applying tools and techniques from computer science to understand 



and reason about both natural and artificial systems and process”18.  This encompasses the 

vision of CT, drawing from traditional computer science to encourage new ways of thinking 

about the world around us.  

 

Computational thinking can be expanded by defining it in terms of concepts, 

practices, and perspectives5. CT concepts have been a popular target for research and 

curricula development; however, the concepts vary across domains.  Some, such as Brennan 

and Resnick, present CT concepts as referenced in their problem domain (Scratch), while 

others, such as the Computer Science Teachers Association (CSTA), present CT concepts for 

application across K-12 curricula19.  Even from within the general domain application, what 

authors include in their definition of CT concepts vary6,8,19. Brennan and Resnick define 

computational concepts (also referred to as CT concepts) as the “concepts that designers 

employ as they program.”  To encompass more fields, CT concepts are generalized as the 

usage of one of the computer science principles listed in Table 1 in solving a problem:  

 
Table 1 Computational Thinking Concepts and Related Computer Science Principles 

 

Abbr. Description 

ALG Algorithmic thinking – sequence of steps that complete a task.  Operators and expressions are also 

included. 

ABS Abstraction – generalized representation of a complex problem, ignoring extraneous information 

DEC Problem decomposition – breaking a problem into smaller, more manageable parts that can be 

solved independently of each other 

DAT Data – collection, representation, and analysis of data6 

PAR Parallelization – simultaneous processing of a task6 

CON Control flow – directs an algorithm’s steps when to complete  

IAI Incremental and iterative – building small parts of the program at each step instead of the whole 

program at once 

TAD Testing and Debugging – performing intermediate testing and fixing problems while developing 

QUE Questioning – working to understand each part of the code instead of using code that is not 

understood well 

 

The importance of incorporating CT into existing curricula and programs is not 

always an easy task, especially in K-12 where problem solving (PS) skills are traditionally 

emphasized.  Most non-computer science educators see the importance of teaching CT, 

though it is often difficult to distinguish CT from PS. Therefore, in many cases, they assume 

teaching PS is sufficient to also teach CT. Authors Voskoglou and Buckley define PS as “an 

activity that makes use of cognitive or cognitive and physical means to overcome an obstacle 

(problem) and develop a better idea of the world that surrounds us”23. Voskoglou and 

Buckley also note that humans, even college graduates, struggle applying theory and problem 

solutions to practice.  The authors continue to describe CT as a hybrid mode of thinking, 

combining logical, abstract, modelling, and constructive thinking. By synthesizing critical 

thinking and existing knowledge, these modes of thinking are essential in solving real-life 

technological problems23.  PS is an activity that combines various components of cognition 

(2005,2012)7,23, concluding that CT is a type of cognitive skill used to solve particular types 

of problems. 

Measuring Computational Thinking 

Measuring computational thinking remains an open problem.  One of the commonly used 

approaches focuses on using evidence-centered assessments21.  Developed curricula vary for 



assessments, but video games seem to be a very common theme as it provides a high level of 

interest for students in the K-12 environment25. Games were encoded under three main 

categories: programming concepts, code organization, and designing for usability.  Each of 

these contained sub categories which were coded for the presence/absence of or to the extent 

of which that sub category was used ranging from zero to three.  Repenning et al. measured 

student’s learning of CT as patterns rather than concepts using Agent Sheets11. This led to an 

automatic analysis tool using latent semantics to determine student growth in CT.  Recently, 

the same group created a system entitled Real-Time Evaluation and Assessment of 

Computational Thinking (REACT), a real-time assessment tool allowing teachers to get 

immediate feedback on what students are struggling with or where they are succeeding2.  

Seiter developed the Progression of Early Computational Thinking model (PECT)20. The 

PECT model combined evidence of programming concepts in Scratch projects with levels of 

proficiency (basic, developing, and proficient) in a set of design patterns to understand 

student ability in CT.  

 

Apart from evidence-centered assessments, researchers employ cognitive science 

methods like attitude or self-efficacy surveys16.  Self-efficacy can be defined as one’s belief 

that they can accomplish a task1. Self-efficacy has also been linked to learning outcomes13, 

making it an effective, low-overhead method for assessment. Yadav et al. created an open-

ended questionnaire, as well as an attitude survey to understand if introducing computational 

thinking material in pre-service education courses influenced pre-service teachers’ 

understanding of CT and attitudes toward computing28. Likewise, Bean et al. developed a 

self-efficacy survey for measuring pre-service teachers’ confidence that they are capable of 

incorporating computer programming into their classroom, how programming relates to core 

curriculum standards, and CT skills3.  These authors also created a CT self-efficacy survey 

for an art-based class part of a STEM outreach program. Their experimental approach served 

as a basis for this work4. 

Methods 
Teaching programming can be a difficult task when involving students who have no 

background in foundational computer science skills.  Our curriculum emphasizes reducing 

cognitive load through scaffolded examples and the Scratch programming environment 

which eliminates complex syntax and programming errors.  We also utilize problem-based 

learning and inquiry learning (2016)24, effectively improving student self-efficacy through 

vicarious experiences, verbal persuasion, enactive attainment, and psychological state 

(reducing cognitive load)1.   

 

From these methods, we created two different curricula as part of the summer STEM 

outreach program.  The Saving the Martian (Mars) class for 5th and 6th grade students 

introduced CT using the Scratch programming environment. Many of the activities were 

modeled on situations or ideas taken from The Martian, by Andy Weir, to make them more 

interesting and exciting for the students. The Mighty Micro Controllers (MMC) class was for 

7th-9th graders and focused on teaching CT through programming Arduino Uno micro 

controllers using Scratch. It also included a short exposure to the Arduino IDE and text-based 

language.  Physical computing has been shown to be a successful method of teaching 

computer science concepts and introductory computer programming14,15. Overall, the format 

of this class included guided examples on how to create certain circuits and programs, 

followed by problem driven exploration to help enforce programming, electrical, and CT 



skills.  MMC heavily utilized pair programming. Each class consisted of four days of 

activities lasting three hours each. As we describe each activity below, we will highlight the 

CT areas it was designed to cover using the information from Table 1 above.  

Saving the Martian 

Students were first introduced to the Scratch environment by building a computer program 

that could draw an n-gon (regular polygon with n sides). Students were shown a sample 

program that drew three lines and were asked to modify it to create various shapes. As the 

number of sides grew larger, students were introduced to iteration to reduce the amount of 

code in the program. Students were encouraged to calculate angles and request user input for 

the number of sides as variables instead of hard-coding those values. At each step, we 

emphasized the importance of testing their program and make sure that each block used was 

understood. (ALG, ABS, CON, IAI, TAD, QUE) 

 

The class then transitioned into sorting algorithms. The students participated in a 

sorting network activity where they followed lines on the floor that intersected, changing 

their direction based on some value, with all students having a higher value going one 

direction and all students with a lower value going the other. Afterwards, students were 

taught to sort playing cards using several common algorithms such as insertion sort and 

bubble sort. Students were then shown how to swap variables in Scratch, and applied that 

knowledge along with iteration from the previous day to write a bubble sort program. For the 

second activity, students were shown how to create a simple simulation program in Scratch to 

demonstrate how a chemical reaction would alter the presence of different materials in the 

atmosphere of a Mars habitat. Once the simulation was started, if the output of certain 

materials became too high, the simulation would stop due to a failure. Students were 

encouraged to adjust the variables of the simulation to see if they could find a way to grow 

plants fast enough to sustain life. (ALG, ABS, DEC, DAT, PAR, CON, IAI, TAD, QUE) 

 

Next, students were introduced binary and hexadecimal number systems using cards 

as value placeholders. Students were shown the scenario from The Martian where the main 

character must communicate with others using only a camera that rotates by placing sixteen 

signs around the camera representing hexadecimal values, converting each pair of values to 

its equivalent ASCII value. Students were given a similar situation in Scratch, and were lead 

through the process of translating the data to ASCII. This involved calculating the angle of 

the camera, converting it from a degree value to a hexadecimal value, and then converting a 

sequential pair of values into an ASCII character. As an added learning experience, the 

original version of the program contained an intentional typo in the message received, 

leading to ambiguity in the message. Students were encouraged to describe ways the system 

could be improved to minimize or eliminate ambiguous messages. (ALG, ABS, DEC, DAT, 

CON, IAI, TAD, QUE) 

 

Finally, students were introduced to several concepts in artificial intelligence, 

including the Turing test and neural networks. Afterwards, students were lead through an 

activity to create simple AI agents for an arcade video game following a simple perceptron 

model. The final activity built upon that structure by using a situation from The Martian, 

where the main character must plot a course around several terrain obstacles while driving 

across the surface of Mars. The students were given a program that randomly generated 

simple obstacles on a terrain, and upon reaching an obstacle, students had to use a simple 



perceptron model to determine how to get around the obstacles while still moving toward the 

goal. (ALG, ABS, DEC, CON, IAI, TAD, QUE) 

Mighty Micro Controllers 

Students were first introduced to the basic principles of electricity.  Most had their first 

exposure to electricity, as well as the concepts of conductivity and insulation.  By using an 

example of marbles in a tube (2014)12, students could visualize and understand the flow of 

electrons.  Once this basic principle was established, students were introduced to resistance, 

voltage, and current (Ohm’s Law), as well as digital, analog, and pulse width modulation 

(PWM) signals.  Before wiring the first circuit, students were required to create a circuit 

diagram (diagrams were provided for all other activities) using Fritzing to visualize how the 

circuit should be laid out10. After everyone completed the blinking LED example, students 

were introduced to an activity called “Resistance is Futile.”  They were challenged to rank a 

set of resistors in order of strength.  By using the previous blinking LED circuit and program, 

students could visualize how resistors impede the flow of electrons. We then expanded the 

single blinking LED to include five LEDs of different colors.  This led to a discussion about 

abstraction, problem decomposition, and reusing/remixing.  The class was guided through the 

process to recognize patterns in the program to reduce the number of blocks that were 

repeated by using Scratch custom blocks.  The next activity extended this program to include 

pushbuttons.  This focused on teaching analog signals, pull-down circuits, open/closed 

circuits, and control flow. (ALG, ABS, DEC, CON, IAI, TAD, QUE) 

 

                After working with basic LEDs and digital signals, we introduced activities for 

PWM signals.  The first utilized RGB LEDs.  Before being able to program, students needed 

to learn how to convert colors to traditional RGB format and how that was translated to the 

RGB LED connected to the Arduino.  Abstraction and custom blocks were emphasized to 

make setting the different intensities of red, green, and blue simple.  Students were then given 

a large amount of discovery time to see what kind of colors they could produce using this 

circuit.  Afterwards, a complete program that gradually changed through all the colors the 

LED could make was demonstrated.  A video of an RGB LED matrix was also used to 

inspire students with more ideas for a final project.  (ALG, ABS, DAT, CON, IAI, TAD, 

QUE) 

 

We continued the class with sensors to emphasize analog signals.  This included a 

guided activity using small motion and ultrasonic sensors, and the applications of how the 

sensors could be used in everyday life. The ultrasonic sensor activity was done using the 

Arduino IDE because Scratch was not able to accurately detect distance with the sensor.  A 

side-by-side comparison was used with Scratch and the Arduino IDE to demonstrate how the 

text-based language translated into Scratch blocks.  After this activity, students were given 

time to complete group projects where they could design, build, and program their own 

circuits.  They had to produce a design document, containing a circuit diagram and materials 

list, before they could start building or programming.  This helped emphasize the engineering 

design process, as students had to keep revising their design when they discovered flaws in 

their original circuit.  At the end of the day, students presented their projects to the class to 

strengthen their technology communication skills. (ALG, ABS, DEC, DAT, CON, IAI, TAD, 

QUE) 

 



Instrument 

To measure student learning, we developed a self-efficacy survey to collect attitudes about 

students’ ability to think computationally. This survey largely expands our previous work3,24 

by adjusting question language to be more age appropriate with our audience, as well as with 

the addition of questions assessing student self-efficacy in problem solving.  These questions 

are framed to correlate to appropriate computational thinking skills.  As such, we organized 

the survey in four main sections: problem solving, computer programming skills, computer 

programming practices, and computer programming impact.  Questions are categorized by 

relevant CT concept, practice, or perspective as seen in Table 2.  Each of these questions 

measured self-efficacy on a five-value Likert scale: strongly agree, somewhat disagree, not 

sure, somewhat agree and strongly agree.  Apart from these questions, the survey also 

contained questions collecting information about gender, participation in STEM 

activities/camps, and background in computer programming.  

 

When solving a problem I... I can write a computer program which... 

1  create a list of steps to solve 

it  

Algorithms  
10 

runs a step-by-step sequence of 

commands  
Algorithms 

2  use math  Algorithms  
11 

does math operations like 

addition and subtraction  
Algorithms 

3  try to simplify the problem 

by ignoring details that are 

not needed (3)  

Abstraction  

12 uses loops to repeat commands  Control Flow 

4  look for patterns in the 

problem  

Abstraction  
13 

responds to events like 

pressing a key on the keyboard  
Control Flow 

5  break the problem into 

smaller parts  

Problem 

Decomposition  
14 

only runs commands when a 

specific condition is met  
Control Flow 

6  work with others to solve 

different parts of the 

problem at the same time  

Parallelization  

15 
does more than one thing at the 

same time  
Parallelization 

7  look how information can 

be collected, stored, and 

analyzed to help solve the 

problem  

Data  

16 
uses messages to talk with 

different parts of the program  
Parallelization 

8  create a solution where steps 

can be repeated (8)  

Control Flow  
17 

can store, update, and retrieve 

values  
Data 

9  create a solution where 

some steps are done only in 

certain situations (9)  

Control Flow  

18 uses custom blocks  Abstraction 

When creating a computer program I... When creating a computer program I... 

19 

make improvements one 

step at a time and work new 

ideas in as I have them 

Being 

Incremental 

and Iterative 

22 

break my program into multiple 

parts to carry out different 

actions 

Problem 

Decomp. 

20 

run my program frequently 

to make sure it does what I 

want and fix any problems I 

find 

Testing and 

Debugging 
Impact 

21 

share my programs with 

others and look at others' 

programs for ideas 

Reuse/Remix, 

Connecting 

23 I understand how computer 

programming can be used in 

my daily life. 

Questioning 

Table 2 The four core sections of the self-efficacy survey, denoting which CT skill each question falls under. 



Our experiment was carried out in a pre-post survey format. Pre-surveys were 

administered online on the first day of each week-long session before any class material was 

given.  The post-survey, which did not contain demographic or STEM participation 

questions, was given on the last day of each session once all projects were finished.  Survey 

participation was voluntary.  Out of 110 students, one student was excluded for opting out of 

the survey, one student was excluded for missing the pre-survey, and three students were 

excluded for having incomplete responses.  A Chronbach’s Alpha of .872 on the pre-survey 

and .908 on the post-survey shows that our survey described in Table 2 is reliable.  

Results 
In the analysis of survey results, we looked at 8 groups outlined in Table 3: Saving the 

Martian (Mars), Mighty Micro Controllers (MMC), male, female, no previous participation in 

STEM activities/groups (No-STEM), previously attended any STEM program (STEM), 

previously attended a different STEM program (Outside STEM), previously attended this 

STEM program (STEM INST), and previously attended Starbase (a separate STEM outreach 

program).  Average over questions 1-23 pre and post means can also be observed in Table 3   

Table 4 shows the effect size22, calculated using pooled standard deviation, for each question, 

broken down by group.  Note that effect sizes of 0.2 are considered small, 0.5 are medium, 

and 0.8 are large. 

 

Overall, 70.42% of students had previously attended some STEM related group 

activity or program, while nearly all students in the program had used a visual-based 

programming language, mostly though Scratch, Hour of Code, and Lego robotics.  These 

results show that in our area, outreach efforts are beginning to spread through the local K-12 

population. Due to small sample sizes, we were not able to break the groups in Table 3 and 4 

into language background (Scratch vs Lego robotics for example). Students who had never 

  Mars MMC Male Female 
No-

STEM 
STEM 

OUTSIDE 

STEM 
STARBASE 

STEM 

INST 

% of 

Students 
53.33% 46.67% 65.71% 34.29% 29.52% 70.48% 35.24% 27.62% 35.24% 

Avg. 

Pre 

Mean 

3.763 3.619 3.71 3.661 3.642 3.718 3.673 3.671 3.764 

Avg. 

Post 

Mean 

4.187 3.884 4.083 3.978 4.016 4.058 4.108 4.165 4.008 

Avg. 

Std. 

Dev. 

1.016 1.056 1.048 1.032 1.074 1.026 1.043 0.988 1.006 

Table 3 The distribution of students included in the survey within each compared group as well as average pre 

and post self-efficacy. 

 



attended any type of STEM program performed just as well as those who had attended a 

STEM program, apart from problem solving skills.  The inverse applies when comparing the 

outside STEM group to those who had previously attended this STEM program.  We 

hypothesize that this result is partially due to a selection bias with this STEM camp and 

Starbase, which accounts for 78% of the outside STEM group.  Those who had participated 

in Starbase in the past showed significantly higher effect sizes on most CT concepts.  This 

could be explained by the difference in the two programs.  The summer camp focuses on 

getting students to have fun in STEM. While Starbase includes many fun, hands-on activities, 

it has a richer, deeper focus in STEM learning outcomes.  Also, Starbase participants are 

from complete classes, whereas this STEM camp contains participants who volunteered.    

 

When comparing the two curricula, Saving the Martian had a larger positive effect on 

student self-efficacy in all four question sub-areas.  This is further confirmed when looking at 

the average initial self-efficacy in Table 3, where MMC could not capitalize on its students’ 

higher potential to learn (lower initial self-efficacy compared to Mars).  We hypothesize that 

this was caused by additional overhead and distractions from making and controlling circuits, 

even though the activities were designed to reduce cognitive load.  In a recent study, Jin et al. 

also experienced this result in a similar camp using physical computing to teach young 

Cat Skill Mars MMC Male Female 
NO-

STEM 
STEM 

OUT-

SIDE 

STEM 

STEM 

INST 

Star-

base 

PS Algorithms 0.400 0.061 0.194 0.306 0.245 0.229 0.269 0.186 0.344 

PS Abstraction 0.215 -0.082 0.101 0.036 0.056 0.089 0.058 0.117 0.153 

PS 

Control 

Flow 
0.434 0.230 0.299 0.427 0.279 0.371 0.558 0.173 0.645 

PS Data 0.082 0.291 0.166 0.178 0.028 0.251 0.349 0.157 0.387 

PS Parallel. 0.181 0.037 0.165 0.000 -0.086 0.192 0.203 0.181 0.135 

PS 

Prob. 

Decomp. 
0.254 0.154 0.270 0.059 0.090 0.268 0.367 0.173 0.310 

CT Algorithms 0.828 0.370 0.667 0.448 0.723 0.538 0.702 0.373 0.878 

CT Abstraction 0.501 0.625 0.513 0.639 0.362 0.653 0.545 0.769 0.692 

CT 

Control 

Flow 
0.480 0.353 0.361 0.574 0.444 0.408 0.583 0.232 0.682 

CT Data 0.728 0.537 0.629 0.642 0.716 0.603 0.818 0.395 0.892 

CT Parallel. 0.628 0.513 0.633 0.468 0.706 0.521 0.653 0.381 0.704 

CT 

Prob. 

Decomp. 
0.530 0.196 0.371 0.380 0.432 0.344 0.560 0.111 0.621 

CT 

Being 

Incremental 

and Iterative 

0.229 0.269 0.278 0.189 0.295 0.224 0.274 0.169 0.344 

CT Questioning 0.631 0.083 0.478 0.203 0.429 0.339 0.540 0.141 0.752 

CT 

Reuse, 

Remixing, 

Connecting 

0.248 0.198 0.305 0.054 0.248 0.211 0.024 0.412 0.132 

CT 

Testing and 

Debugging 
0.091 0.230 0.167 0.143 0.309 0.093 0.126 0.056 0.176 

Table 4 The effect size for each survey question, broken into each comparison group.  Italicized indicates a p-

value of ≤ . 𝟎𝟓, italicized, underlined indicates a p-value of ≤ . 𝟎𝟏, and bolded indicates a p-value of ≤ . 𝟎𝟎𝟏. 

 



learners how to program9.  The authors discuss that, while physical computing can be 

engaging and fun, students become distracted by the physical devices making it “challenging 

to teach rigorous computing concepts in such a busy environment.” 

 

 Breaking down the results to specific concepts, the Mars curriculum emphasized 

algorithmic thinking through sorting algorithms, using CS unplugged to explain sorting 

before implementing in Scratch.  This is shown to be highly effective compared to MMC, 

which focused on using LEDs as a method to teach algorithms.  MMC focused creating and 

programming parts of each circuit one component at a time.  For example, to make a circuit 

with five LEDs, students first had to make a circuit with only one.  Surprisingly, MMC had 

no significant result for problem decomposition.  We were also surprised to see no effect on 

MMC students’ understanding on how programming can be used in their daily lives.  The 

MMC curriculum leveraged physical computing to provide tangible results from 

programming lights and sensors that could be used at home in practical applications; 

however, it was unsuccessful in our context. 

 

 Our curriculum did not perform well for questions 19-21 across all groups when 

compared to CT concepts.  This shows that CT practices need to be balanced more alongside 

the other CT skills.  Our curriculum focused on CT, with PS as an effect of the process of 

building circuits and programs.  We observed very little gains in self-efficacy related to 

problem solving, revealing little to no effect in many PS areas. Skills like algorithms and 

control flow show some relation the effects in CT skill questions, but no discernable pattern 

was found.  If CT was inherently problem solving, we would have expected a correlation 

between both CT and PS skills.  Results between male and female were also interesting, 

particularly with conditionals in control flow, though sample sizes were too small to make 

conjectures.  

Conclusions 
In this paper, we have discussed the application of two curricula applied to a 5th-9th grade 

STEM outreach program.  By adjusting the language from previous work (2015,2016)3,24 to 

be more age appropriate and using a smaller Likert scale, we created a survey that was more 

consistent within student responses and effective at measuring self-efficacy in CT.  From 

reviewing the survey results, we found that using micro controllers as a tool for teaching CT 

was less effective than a pure computer science related curriculum.  Although MMC was 

effective at fostering improvement in CT skills, our curriculum has room to improve when 

using physical computing.  We may be able to further improve self-efficacy by implementing 

our MMC curriculum using the Active-Media Design method used by Jin et al.9  Finally, we 

have shown that CT framed inside PS is largely decoupled from CT.  This may be the initial 

indicators that support our goal of showing that CT is not PS.  We recognize that this relies 

on the small sample sizes of our experiment, and that larger studies will be needed to fully 

confirm that goal.  Due to limitations of the STEM program, we conducted our research as 

transparently as possible.  We recognize that student interviews (especially when evaluating 

the relation between PS and CT) and knowledge-based assessments would likely provide 

more insight into our research questions.  We felt implementing knowledge-based 

assessments would make it feel like a normal classroom and not a summer camp, and using 

interviews is currently not feasible in the time we have the students.  More so, self-efficacy 

has been shown to be a good predictor of student learning outcomes13. One possible area of 

future improvement is the inclusion of trivia games to collect some knowledge-based 



assessment data while still maintaining the spirit of the summer camp atmosphere. Apart 

from knowledge-based assessments, we also chose not to conduct static analysis on code 

produced by students.  Since many of our activities were heavily scaffolded, most solutions 

that students produced were identical leaving little information to be gained.  

References 
1. Bandura, A. (1982). Self-Efficacy Mechanism in Human Agency. American Pyschologist, 37(2), 122-147. 
2. Basawapatna, A., Repenning, A., & Koh, K. H. (2015). Closing The Cyberlearning Loop. Proceedings of 

the 46th ACM Technical Symposium on Computer Science Education - SIGCSE '15, (pp. 12-17).  

3. Bean, N., Weese, J. L., Feldhausen, R., & Bell, R. (2015). Starting From Scratch: Developing a Pre-

Service Teacher Program in Computational Thinking. Frontiers in Education. 

4. Bell, R. S. (2014). Low Overhead Methods for Improving Capacity and Outcomes in Computer Science. 

Manhattan, KS: Kansas State University. 

5. Brennan, K., & Resnick, M. (2012). Using artifact-based interviews to study the development of 

computational thinking in interactive media design. Vancouver, BC, Canada: American Educational 

Research Association. 

6. Google. (2016, April 1). Computational Thinking Concepts Guide. Retrieved from Google for Education: 

https://docs.google.com/document/d/1i0wg-

BMG3TdwsShAyH_0Z1xpFnpVcMvpYJceHGWex_c/edit#heading=h.ld02iaxpskpn 

7. Green, A. J., & Gilhooly, K. (2005). Problem Solving. In N. Braisby, & A. Gellatly, Cognitive Pychology. 

Oxford: Oxford University Press. 

8. Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. 

Educational Researcher, 42(1), 38-43. 

9. Jin, K. H., Haynie, K., & Kearns, G. (2016). Teaching Elementary Students Programming in a Physical 

Computing Classroom. Proceedings of the 17th Annual Conference on Information Technology 

Education - SIGITE '16, (pp. 85-90). 

10. Knörig, A., Wettach, R., & Cohen, J. (2009). Fritzing – A tool for advancing electronic prototyping for 

designers. Proceedings of the 3rd International Conference on Tangible and Embedded Interaction - 

TEI '09 (pp. 351-358). New York, NY, USA: ACM Press. 

11. Koh, K. H., Basawapatna, A., Bennett, V., & Reppening, A. (2010). Towards the Automatic Recognition 

of Computational Thinking for Adaptive Visual Language Learning. IEEE Symposium on Visual 

Languages and Human-Centric Computing, (pp. 59-66). 

12. Kuphaldt, T. R. (2014, Feb). Lessons in Electric Circuits. Retrieved 2016, from allaboutcircuits: 

http://www.allaboutcircuits.com/textbook/ 

13. Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to Program: Gender Differences and 

Interactive Effects of Students' Motivation, Goals, and Self-Efficacy on Performance. Proceedings of 

the 2016 ACM Conference on International Computing Education Research (ICER '16) (pp. 211-

220). New York, NY, USA: ACM. 

14. Mason, R., & Cooper, G. (2013). Mindrostrms Robots and the Application of Cofnitive Load Theory in 

Introductor Programming. Computer Science Education, 23(4), 296-314. 

15. Przybylla, M., & Romeike, R. (2008). Physical Computing and its Scope - Towards a Constructivist 

Computer Science Curriculum with Physical Computing. International Journal of Technology, 4(3), 

93-102. 

16. Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and Mental Models in Learning to 

Program. ACM SIGCSE Bulletin, 36(3), 171-175. 

17. Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., . . . Kafai, Y. 

(2009). Scratch: Programming for All. Communications of the ACM, 52(11), 60-67. 

18. Royal Society. (2012). Shut Down or Restart? The way Forward for Computing in UK Schools. The Royal 

Academy of Engineering. Retrieved from https://royalsociety.org/topics-policy/projects/computing-

in-schools/report/ 

19. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'Grady-Cunniff, D., . . . Verno, A. (2011). CSTA 

K-12 Computer Science Standards. New York: Association for Computing Machinery. Retrieved 

March 31, 2016, from http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf 

20. Seiter, L., & Foreman, B. (2013). Modeling the Learning Progressions of Computational. Proceedings of 

the ninth annual international ACM conference on International computing education research - 

ICER '13, (pp. 59-66). 



21. Snow, E., Haertel, G., Fulkerson, D., Feng, M., & Nichols, P. (2010). Leveraging Evidence-Centered 

Assessment Design in Large-Scale and Formative Assessment Practices. Denver, CO: National 

Council on Measurement in Education. 

22. Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value is Not Enough. Journal of 

Graduate Medical Education, 4(3), 279-282. 

23. Voskoglou, M. G., & Buckley, S. (2012, September). Problem Solving and Computers in a Learning 

Environment. Egyptian Computer Science Journal, 36(4), 28-46. 

24. Weese, J. L., Feldhausen, R., & Bean, N. H. (2016). The Impact of STEM Experiences on Student Self-

Efficacy in Computational Thinking. Proceedings of the 123rd American Society for Engineering 

Education Annual Conference and Exposition (ASEE 2016). New Orleans, LA, USA. 

25. Wilson, A., Hainey, T., & Connolly, T. (2012). Evaluation of Computer Games Developed by Primary 

School Children to Gauge Understanding of Programming Concepts. Proceedings of the European 

Conference on Games Based Learning, (pp. 549-558). 

26. Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. 

27. Wing, J. M. (2011, March 6). Research Notebook: Computational Thinking--What and Why? (J. Togyer, 

Ed.) The Link Magazine. Retrieved March 29, 2016, from http://www.cs.cmu.edu/link/research-

notebook-computational-thinking-what-and-why 

28. Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational Thinking in 

Elementary and Secondary Teacher Education. ACM Transactions on Computing Education, 14(1), 1-

16.  

 

 

 


