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1 Introduction to the Kansas State BMI Group 
This group has explored the use of probabilistic representation, learning, and reasoning in: 

Data mining for decision support: In cooperation with the National Center for Supercomputing 
Applications (NCSA) at the University of Illinois, where we retain a visiting appointment, we have 
assisted in development of three NSF REU programs and the D2K reference architecture for KDD [91]; 
locally, we developed BNJ [60] and MLJ [63] for use in our own and collaborators’ courses.  These have 
lead to published results on commercial KDD for decision support [55, 56, 61, 65] and to development of 
a graduate degree certificate, distance learning courses, public course tools, and software for PRISM [22]. 
We are also applying these tools to decision support in transportation engineering. 

Bioinformatics: Over the past year and a half, we have entered into three fruitful collaborations with 
genome researchers. First, to facilitate progress towards our goal and projects that apply probabilistic 
learning and reasoning to gene expression modeling, we have established a bioinformatics working group 
with colleagues in biology, agronomy, and electrical and computer engineering.  This group has outlined 
a project to develop temporal probabilistic models of gene regulatory dynamics in the model plant 
Arabidopsis thaliana.  We believe this will contribute towards the Project 2010 challenge problem of 
understanding the function of all A. thaliana genes, enabling construction of a “virtual plant” by the end 
of the decade [119].  Our working group has identified two independent milestones for this part of the 
project: (i) collection of microarray data from experimental treatments of A. thaliana and (ii) development 
and evaluation of robust learning algorithms for graphical probabilistic models using this data and 
existing repository data [117, 118].  To this we add (iii) development of data models and collection of 
content and historical user data and (iv) development, evaluation, and deployment of inference and 
decision support techniques for a collaborative filtering system.  Second, we serve on a curriculum and 
faculty hiring committee in computational life sciences whose primary mission is to develop an 
interdisciplinary undergraduate specialization in bioinformatics [49].  Third, we have begun to work with 
bioinformatics groups at NCSA, The Institute for Genomic Research (TIGR), and the University of 
Manchester, the lead institution of the myGrid  initiative [121] and a partner of the European 
Bioinformatics Institute (EBI) [31]. 

2 Background 
Because we will build on the existing XML implementation of the MAGE (Microarray Gene 
Expression) [83] data standard developed by the Microarray Gene Expression Database (MGED) 
group [84], we provide a short summary of MAGE, its ancestors, and an ontology, TAMBIS [8, 12, 14], 
that is important to the realization of our system.  Other related work is discussed in other sections where 
relevant. 

We seek to take existing ontologies and minimum information standards for computational genomics and 
create a refined and elaborated data model for decision support in retrieving data, metadata, and source 
codes to serve researchers.  A typical collaborative filtering scenario using a domain-specific research 
index or portal [92, 109] is depicted in Figure 1.  We now survey background material briefly to explain 
this scenario, then discuss the methodological basis of our research: development of learning and 
inference components that take records of use cases and queries (from web server logs and forms) and 
produce decision support models for the CF performance element. 

2.1 Gene Expression Modeling using Microarrays 

 As a motivating example of a computational genomics experiments, we use gene expression 
modeling from microarray data.  DNA hybridization microarrays, also referred to as gene chips, are 
experimental tools in the life sciences that make it possible to model interrelationships among genes, 
which encode instructions for production of proteins including the transcription factors of other genes.  
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Microarrays simultaneously measure the expression level of thousands of genes to provide a “snapshot” 
of protein production processes in the cell [17].  Computational biologists use them in order to compare 
snapshots taken from organisms under a control condition and an alternative (e.g., pathogenic ) condition.  
A microarray is typically a glass or plastic slide, upon which DNA molecules are attached at up to tens of 
thousands of fixed locations, or spots.  Microarray data (and source code for programs that operate upon 
them) proliferate rapidly [49] due to recent availability of chip makers and scanners. 

 

Figure 1. Overview of a typical collaborative filtering scenario using a scientific research index. 

 A major challenge in bioinformatics [17] is to discover gene/protein interactions and key features of a 
cellular system by analyzing these snapshots. [38]  Our recent NSF EPSCoR First Award project [50] 
focuses on the problem of automatically extracting gene regulatory dependencies from microarray 
data, with the ultimate goal of building simulation models of an organism [119] under external conditions 
such as temperature, cell cycle timing (in the yeast cell), photoperiod (in plants), etc.  Genomes of model 
organisms, such as S. cerevisiae (yeast) [26], A. thaliana (mouse ear cress or weed) [117, 118], O. sativa 
(rice) [123], C. elegans (nematode worm), and D. melanogaster (fruit fly), have been fully sequenced.  
These have also been annotated with the promoter regions that contain binding sites of transcription 
factors that regulate gene expression.  Public repositor ies of microarray data such as the Saccaromyces 
Genome Database (SGD) [26] for yeast have been used to develop a comprehensive catalog of genes that 
meet analytical criteria for certain characteristics of interest, such as cell cycle regulation in yeast. [113]  
We are using SGD data and a synthesis of existing and new algorithms for learning Bayesian networks 
from data to build robust models of regulatory relationships among genes from this catalog [49, 50].   

2.2 Collaborative Filtering 
Most data resources we plan to use in developing DESCRIBER are in the public domain [16, 26, 117, 
118], while some are available under local and international research agreements (and based upon 
cooperative efforts with the labs of Leach et al., Roe, Quackenbush, and Goble). 
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Figure 2.  Schematics for (a) MGED [83, 85, 86] and (b) DESCRIBER [49] data models 

 The MGED group defines a microarray experiment [86] as “a set of one or more hybridizations [of 
labeled, single -stranded DNAs, synthesized from mRNA extracts of test organisms, with their 
complementary sequences on a microarray], each of which relates one or more samples to one or more 
arrays.  The hybridized array is then scanned and the resulting image analyzed, relating each element on 
the array with a set of measurements.  The data are normalized and combined with data from replicate 
hybridizations.”  Figure 2 (adapted from [86] and [83]) shows two schematic representations: on the left, 
MGED’s block diagram describing a data acquisition experiment; on the right, our analogous diagram 
for computational gene expression modeling from this data [49, 53].  The diagrams sketch out 
relations among the experimental entities; MGED first specified the ones on the left in the Minimum 
Information in a Microarray Experiment (MIAME) data standard [86].  MIAME was implemented by 
the markup language MAML [85], which was unified with the Gene Expression Markup Language 
(GEML) [106] in November, 2001 to form MAGE-ML [83]. 

 We propose to develop such data models by building upon MAGE-ML and using ontology 
construction tools such as the Ontology Inference Layer (OIL) [12, 48] to provide personalized 
responses to queries of the form shown in Figure 1 [122].  One ontology development tool designed for 
this purpose is TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) [8]. 

 

3 Research Activities, July 2001 – July 2002 

3.1 Learning gene expression networks from microarray data 

We recently received an NSF EPSCoR First Award [50] (June, 2002 – August, 2003) to build 
probabilistic network models of cell cycle-regulated genes in yeast.   

 

3.2 DESCRIBER: Intelligent Collaborative Filtering in Bioinformatics Repositories 
 
In a 1998 invited talk  at several co-located intelligent systems research conferences in Madison, 
Wisconsin, Kohavi described a technology adoption chasm between leading research in academic 
machine learning and development of commercial data mining products [73].  Our work seeks to bridge a 
similar gap [99] : between producers of repositories containing resources for computational biology and 
users who apply these resources to develop computational experiments.  General-purpose technologies for 
intelligent search and document categorization have filled this gap only to a limited degree, leaving the 
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difficult  challenge of matching user requirements to data, programs, and models in specialized domain 
areas. 

PROBLEM STATEMENT: We consider the problem of collaborative filtering (CF) – analyzing the content 
of an information retrieval (IR) system and databases about actions of its users, to infer users’ preferences 
and thereby predict topics or products that may be useful to them.  To aid design and implementation of 
gene expression modeling experiments, we propose an integrated CF system for computational genomics, 
based upon the functional content of repositories for bioinformatics research and development. 

AIMS AND SCOPE: The focus of this integrative research and education program is on formalizing 
collaborative filtering environments and representing them using graphical models of probability such as 
Bayesian networks and relational and object-oriented extensions thereof [9, 68, 76].  The motivating 
application is to facilitate design of computational experiments in bioinformatics (especially genome 
analysis) and reuse [41, 77] in the development of software assemblies [33] that implement these 
experiments.  Our central hypothesis is that probabilistic representation, learning, and reasoning are 
effective tools for developing the intelligent retrieval and indexing components of such a CF system.  The 
primary contribution of this research shall be the novel combination of statistical algorithms for learning 
the structure of graphical models from data with existing techniques for constructing relational models of 
gene experiments, data, and programs.  The desired outcome of applying our new technology is the first 
autonomous CF system for personalization of research in computational genomics.  The technical 
objectives center around development of semi-structured data models [1] for collaborative filtering, 
algorithms for learning and reasoning using Bayesian networks, and statistical experiments to evaluate 
this approach. 

 Our research plan consists of three sections corresponding to aspects of our system design: 

? DESCRIBER: overall collaborative filtering system, built from our components 
? Learning structure from data: automated use-case modeling, ontology-building, and indexing 
? The bioinformatics semantic web: data models based upon MAGE-ML [83] and TAMBIS [8] 

 As documented by Karlin [70], many search engines use simple statistical models in order to rank 
pages.  Collaborative filtering (CF) [45] is a decision support technique [101] that augments this type of 
modeling with reasoning about user goals, plans, actions, and preferences [108].   A simple application of 
collaborative filtering is to use previously-recorded associations [2, 102] among search targets to provide 
“related” content of plausible interest to the user.  This approach is used in market basket analysis [19] – 
Amazon.com being one of the most well-known examples [109] – as well as cross-indexing systems such 
as that of ResearchIndex [80].  This associational knowledge can be compiled and used to make 
inferences in an efficient and scalable manner in IR systems [3, 115], but because of their representational 
simplicity, systems that use it have limited ability to generate explanations [97, 111]. 

 Studying interactions among genes through the proteins that they can instruct a cell to produce gives 
biologists insight into many important cellular mechanisms.  DNA microarrays or gene chips are data 
acquisition tools that can be used to build mathematical models of these interactions. [17]  We use this as 
a motivating example and defer a technical synopsis of microarray technology to the research plan. 

 Suppose a developmental biologist working on functional mapping of the genome of the model plant 
Arabidopsis thaliana [119] has collected scans of DNA microarrays from her own hybridization 
experiments, and submits a query for gene expression modeling tools.  The codes, annotated 
experiments, and resultant postprocessed data and models that apply to this data are diverse [5, 27, 87, 
117, 118].  They may cover the following tasks, among others: 

? Image postprocessing [6, 7]: chip alignment, quality assurance, feature extraction,  
image-based inspection, data normalization 
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? Data analysis : (a) single-gene profiling, clustering [11, 13, 20, 113]; (b) modeling of gene 
pathways and networks [15, 38, 40] 

 The above tasks fall into roughly sequential order, yet the identification of codes for performing a 
concrete instance of each task is still a challenging problem.  The user must choose from a broad palette 
of tools and may waste considerable effort in integrating component codes into a usable software 
assembly [33] for her complete computational experiment.  Even if these tools are organized in a proper 
taxonomy [8, 12] and have proper type annotations [105, 107], it is difficult to predict and explain in 
advance how they will function as a whole , and whether they fit the overall requirement.  These obstacles 
to software reuse [41, 77] are clearly not specific to bioinformatics; in this proposal, however, we 
describe existing online resources for bioinformatics research that exemplify a broader class of CF 
problems: personalization and workflow development [44] over scientific code and data repositories. 

 Graphical models of probability [69, 89, 96] for machine learning and reasoning under uncertainty 
have been applied to automatically classify and build data models for searchable repositories [43, 82, 
112]. The collection of user data from such digital libraries provides a test bed for the underlying 
intelligent CF technology.  This proposal documents some functional relationships among the different 
resource types in a bioinformatics repository, as well as data and metadata standards [8, 14, 84], indexing 
methodology, and evaluation measures.  It then addresses the problem of formulating tractable and 
efficient problem specifications for IR in bioinformatics, and describes a CF framework that applies 
existing and new algorithms for probabilistic learning and inference to these problems. 

 In summary, we hypothesize that developing constraint modeling and checking tools [122] for 
bioinformatics may reveal semantic gaps to be bridged by our work on extracting probabilistic models 
from CF data, leading to a general learning and inference architecture for e-science [103, 120]. 

3.2.1 Unifying objectives and strategy 

The technology transfer chasm we referred to in section 3 and some of its technical causes have 
frequently been attested to in plenary and keynote addresses at conferences [42, 116].  In many 
computational science and engineering (CSE) domains, large collections of domain-specific tools (data, 
metadata, experimental documentation, and codes) are being built for use by researchers, but are 
underutilized due to deficiencies in categorizing and indexing the content of repositories and especially in 
modeling the structure of user requirements and the function of specialized software tools. 

 We now briefly review the foundational and supporting objectives of the project, and suggest 
concrete outcomes by which the success of the project can be measured.  This is followed by a more 
detailed discussion of our strategy for realizing these objectives. 

FOUNDATIONAL OBJECTIVE: The cornerstone of our project is the construction of the Data Entity and 
Source Code Repository Index for Bioinformatics Experimental Research (DESCRIBER).  With this 
system, we can develop and evaluate new algorithms for probabilistic learning and inference in intelligent 
filtering and integrate them into tools for the bioinformatics Grid [35, 44, 120] and semantic web [12, 83].  
This system shall serve as a foundation for experiments and refinement of our methodology. 

SUPPORTING OBJECTIVES : Two other primary measures of success for this project, which we discuss in 
the rest of section 3, are the evaluation and validation of our design approach and educational plan.  

 Our plan includes five research tasks: (1) completion of our current NSF EPSCoR project [50] on 
graphical probabilistic models of gene expression, which meshes well with DESCRIBER; (2) continuing 
development of BNJ and MLJ; and development and application of our (3) XML data standard and use 
case modeling language, (4) intelligent CF system, and (5) ontology-building tool 
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3.2.2 Goal and rationale  

The primary goal of our research, teaching, and mentoring over the next five years is to advance 
probabilistic learning and reasoning using graphical models as a fundamental methodology for 
building integrative repositories for computational science research and as a basis for developing 
models of data, experiments, software, and users to support intelligent filtering therein. 

PLAN OVERVIEW: We plan to meet this goal by making significant contributions to: 

Bioinformatics research: The formalization of collaborative filtering systems demands an understanding 
of relevant inference, pattern recognition, and machine learning problems and probabilistic representation 
[75] to support solutions to these problems.  In our application domain of computational genomics, we 
will need to formalize data models for specification of (1) molecular biology experiments such as 
hybridizations using DNA microarrays, (2) computational analyses such as gene clustering and 
expression network discovery, and (3) cross-language application programmer interfaces for genome 
analysis software.  One illustrative application of this data model is intelligent reasoning to map 
experimental data from microarray hybridization experiments (item 1 above) to the appropriate programs 
(3 above) for operating upon it, given a specification (2 above) for the desired computational analysis.  
We describe a system design that supports this intelligent reasoning and automated refinement of the data 
model, using a probabilistic representation. 

Development of intelligent systems tools: In May, 2002, we released the first versions of two open source 
software packages [59, 62] for machine learning and probabilistic reasoning that we developed to serve in 
our research projects and courses in knowledge discovery in databases (KDD).  These packages, called 
Machine Learning in Java (MLJ) [63] and Bayesian Network Tools in Java (BNJ) [60], currently contain 
a number of previously published algorithms as well as our own, to which we shall add via our own 
development, student projects, and collaborations with the research community [90]. 

Pedagogy: As practitioners of computational biology and bioinformatics address deeper challenges such 
as whole-genome alignment and expression modeling, there is an increasing synergy among the areas of 
data mining [124], software engineering, and high-performance distributed and parallel computing.  The 
goal of our educational effort for the next five years is to develop a basic curriculum in pattern 
recognition, intelligent systems, and data mining (PRISM) methodologies [22] for problems in 
computational science and engineering, with our contribution focused on bioinformatics and collaborative 
filtering.  In the long term, we would like to develop a new course on intelligent IR where key concepts 
such as clickstream analysis, document categorization, user modeling, and decision support are explained 
in a systematic way using graphical probabilistic models [69, 96] and information theory [29, 81]. 

RATIONALE: Recent systems such as ResearchIndex / CiteSeer [80] have succeeded in providing cross-
indexing and search features for specialized but comprehens ive citation indices of full documents.  The 
indexing technologies used by such systems, as well as the general-purpose algorithms such as Google 
PageRank [18] and HITS  [71], have several advantages: They use a simple conceptual model of document 
webs.  They require little specialized knowledge to use, but organize and present hits in a way that allows 
a knowledgeable user to select relevant hits and build a collection of interrelated documents quickly.  
They are extremely popular, encouraging users to submit sites to be archived and corrections to citations, 
annotations, links, and other content.  Finally, some of their content can be automatically maintained. 

 Despite these benefits, systems such as ResearchIndex have limitations [98] that hinder their direct 
application to IR from bioinformatics repositories: 

? Over-generality: Citation indices and comprehensive web search engines are designed for the 
generic purpose of retrieving all individual documents of interest, rather than collections of data sets, 
program source codes, models, and metadata that meet common thematic or functional specifications. 
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? Over-selectivity: Conversely, IR systems based on keyword or key phrase search may return fewer 
(or no) hits because they check titles, keywords, and tags rather than semi-structured content [1, 122]. 

? Lack of explanatory detail:  A typical user of an integrated collaborative filtering system has a 
specific experimental objective, whose requirements he or she may understand to varying degree 
depending upon his or her level of expertise.  The system needs to be able to explain relationships  
among data, source codes, and models in the context of a bioinformatics experiment. 

 How can we achieve the appropriate balance of generality and selectivity?  How can we represent 
inferred relationships among data entities and programs, and explain them to the user?  Our thesis is: 

Probabilistic representation, learning, and reasoning [75] are appropriate tools for providing 
domain-specific collaborative filtering capability to users of a scientific computing repository, such 
as one containing bioinformatics data, metadata, experimental documentation, and source codes. 

 We therefore present a plan to develop DESCRIBER, a research index for consolidated repositories of 
computational genomics resources, along with machine learning and probabilistic reasoning algorithms to 
refine its data models and implement collaborative filtering.  The unifying goal of the work is to advance 
the automated extraction of graphical models of use cases for computational science resources, to serve a 
user base of researchers and developers who work with genome data and models.  We present recent 
results from our own work and related research that suggest how this can be achieved through a novel 
combination of probabilistic representation, algorithms, and high-performance data mining not previously 
applied to collaborative filtering in bioinformatics.  Our project shall also directly advance gene 
expression modeling and intelligent, search-driven reuse in distributed software libraries. 

3.2.3 Development schedule  

Our technical objectives can be divided among model construction, evaluation, and application phases. 

CONSTRUCTION: The first 18-month phase shall produce entity-relational data models and a 
standardized, documented training corpus for learning probabilistic models from our own use cases [49, 
53] and the yeast genome database [26], MAGE [83], and the EBI [31] and OpenBio  [95] consortia.  
Meanwhile, we will also develop use cases using data and documentation archived at the Stanford 
Microarray Database (SMD) [16] and The Arabidopsis Information Resource (TAIR) [117] and produced 
by our collaborators at NCSA [91], TIGR [118], and the myGrid-EBI project [31, 121].  In an overlapping 
42-month phase (steps 3-5), we will construct models and ontologies for CF by applying our learning and 
inference codes [60, 63] to this data. 

EVALUATION: We will develop algorithms for both learning and inference of graphical models and 
compare them to existing ones for structure learning [28, 47] and exact [79] and approximate inference 
[24].  This project focuses on extending structure learning to semi-structured relational models and the 
evaluation of robustness by statistical validation of discovered models.  We propose to generalize and 
refine existing evaluation methods [38, 43, 112] by (i) validating more model features; (ii) checking 
automatically extracted models against published ontologies.  Because bootstrap methods for model 
evaluation are computationally intensive, we will use high-performance Grid applications [34, 35] that we 
are already developing with NCSA [50] to accomplish the indicated experiments. 

APPLICATION:  To validate the resultant models, we will use simulated or real observations of queries 
and IR sessions with real document repositories. As this section explains, model application is expected to 
lead to a process of iterative improvement of models, by refinement and redesign. 

3.2.4 System design of DESCRIBER 
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 Figure 3 depicts our design for DESCRIBER.  4(a), shown on the left, is the block diagram for the 
overall system, while 4(b) elaborates Module 1 as shown in the lower left hand corner of 4(a).  Our 
current and continuing research focuses on algorithms that perform the learning, validation, and change of 
representation (inductive bias) denoted by Modules 2 and 4.  We choose probabilistic relational models  
as a representation because they can express constraints (cf. Figure 1) and capture uncertainty about 
relations and entities [43] such as those elaborated from Figure 2 [49].  We hypothesize that this will 
provide more flexible generalization over use cases.  We have recently developed a system for Bayesian 
network structure learning [58] that improves upon the K2 [28] and Sparse Candidate [39] algorithms by 
using combinatorial optimization (by a genetic algorithm) to find good topological orderings of variables.  
Similar optimization wrappers have been used to adapt problem representation [25, 46, 65, 74, 100] in 
supervised inductive learning for classification, using decision trees and instance-based learning.  We 
refer the interested reader to [64] and [49] for details of our system. 

 Other relevant work includes BioIR [94], a digital library for bioinformatics and medical informatics 
whose content is much broader than that of our work on genome analysis.  BioIR emphasizes phrase 
browsing [93] and cross-indexing of text and data repositories rather than experimental metadata and 
source codes.  Other systems such as CANIS [23], SPIDER [125], and OBIWAN [126] also address 
intelligent search and IR from bioinformatics digital libraries, emphasizing categorization of text 
documents.  We view the technologies in these systems as complementary and orthogonal to our work 
because of this chief difference. 

 

Figure 3.  Design of (a) DESCRIBER and (b) its collaborative filtering front end. 

 We now continue with specific technical requirements generated by this goal, such as evaluating and 
developing computational techniques for extracting novel, useful, and comprehensible information 
[32] about microarray experiment records, data, and source codes from consolidated repositories. 

3.2.5 The bioinformatics semantic web 

We propose to develop an data model for intelligent filtering of bioinformatics repositories.  Although we 
refer to DESCRIBER as a collaborative recommender system, strictly speaking, it also includes structural 
recommendation to model relations among documents [104].  As Figure 2(b) shows, we intend to use this 
data model to develop ontologies for computational experiments using microarray data.  Figure 3(b) 
illustrates how DESCRIBER will use this to extract constraints that can be checked against semi-
structured data.  Producing a model to improve retrieval of source codes, experimental records, and data 
sets from our repository requires additional parameters to be learned or inferred from historical records.  
We will use traditional methods for Bayesian parameter estimation as well as new stochastic 
approximation algorithms that we are developing. The broad objectives of this line of research are to 
increase the robustness of inductive machine learning algorithms and develop learning systems that can 
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be automatically tuned to meet the requirements of a KDD performance element.  In the past 30 months, 
our research group has produced BNJ [59, 60], a comprehensive Java-based software library for Bayesian 
network learning and inference, and MLJ [62, 63], an extendible Java port of the MLC++ class library 
[72].  As BNJ development continues, we shall focus our research on issues of probabilistic 
representation, learning, and inference in decision support.  One limitation of keyword-based search 
affects semistructured data models as well: they lack the representation of semantic structure to properly 
model the user’s intentions and the relationships among data sets, program source codes, models, and 
metadata, which in bioinformatics research tends to greatly cut down the set of relevant documents. 

EXPLANATORY CAPABILIT Y IN INTELLIGENT INFORMATION RETRIEVAL: A key benefit and anticipated 
new contribution of our approach is that it will allow DESCRIBER to produce explanations of why 
retrieved experimental documents and source codes match the user (e.g., use case) query.  Pearl discusses  
the use of graphical models to explain causal relationships [97].  We will adapt existing machine learning 
techniques for personalization [82, 112], especially using relational probabilistic models [50] , to produce 
these explanatory structures.  During this five-year project, we will also develop new algorithms based 
upon probabilistic extensions of the relational and constraint models required to implement Figure 3(b). 

3.2.6 Evaluation and validation of design approach 

DESCRIBER serves a single goal: to benefit the bioinformatician in design and implementation of 
computational experiments.  We will evaluate our system using two independent criteria: gain from 
collaborative filtering (CF) and experimental solution quality. 

GAIN FROM COLLABORATIVE FILTERING: We plan to evaluate software reuse over repositories of 
bioinformatics data, metadata, and source code (effectively, distributed component libraries).  The 
software engineering literature provides metrics for reuse and analytical and empirical evaluation 
methodology [10, 30] that we shall apply.  This evaluation shall be carried out by experimenters, or “end 
users” of the CF system, in both our own group and our collaborators’.  Our hypothesis  that graphical 
relational models are the appropriate representation and probabilistic reasoning the appropriate techniques 
for building the constraint models for CF shall be  tested by comparing the level of reuse (percent of 
new code implemented and development time) without intelligent CF, with the current myGrid CF 
technology, and with the DESCRIBER system.  If our new algorithms for Bayesian network structure 
learning are also shown to be competitive (in robustness, inferential accuracy, and especially utility gain 
in CF) with current algorithms such as TETRAD [114] and the Sparse Candidate algorithm [39], they 
shall provide new tools for robust, automated extraction of data models in e-science [120]. 

SOLUTION QUALITY ASSESSMENT IN GENE EXPRESSION MODELING: Focusing on gene expression 
modeling, we will use both our synthetic expression data and biological data collected by our 
collaborators on microarray analysis of S. cerevisiae (yeast), A. thaliana (weed), O. sativa (rice), and D. 
melanogaster (fly) to assess solution quality. 

 Our recent technical report [49] and First Award project proposal [50] document how we will assess 
the ability of our algorithms to re-extract network information by measuring their robustness using 
bootstrap sampling cf. Friedman et al. [38, 40].  Simply put, suppose existing microarray data is 
randomly sampled many times and used to build multiple probabilistic models, and a link, pathway or 
parents-child relationship among two or more genes is frequently found using these many samples.  One 
evaluation criterion is the frequency of trending relations in gene expression pathways: e.g., with time, 
temperature, phenology, or constitutive (invariant with time and temperature).  If this frequency is very 
high, it will be a significant result, illustrating the representational power of Bayesian networks and 
giving further positive indications for dynamic probabilistic network [88] modeling of gene dynamics.  
The latter will refute it while raising the interesting question as to how the principles of chemical kinetics 
are being evaded.  A middle result will let subsequent studies focus on subsystems that do or do not 
exhibit cell cycle dependence.  Independent of the success of network analyses, gene expression 
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experiments developed using our collaborative filtering tool will provide further entry points for 
microarray hybridization experiments in S. cerevisiae.  If they do result in statistically robust results , 
they may be further used to suggest confirmatory hybridization experiments for biologists.  This is a 
significant benefit because of the high cost of data acquisition.  Microarrays are still expensive at 
present, especially when used on the scale of gene dynamics modeling such as with temperature, 
metabolism.  We further anticipate that this approach shall generalize to A. thaliana [119] and other 
organisms studied by our collaborators and pathways such as photoperiod-regulated ones in plants. 

 Our preliminary experiments [49, 53, 58] using Asia, ALARM [28], and the 250-gene data set 
studied by Friedman et al. [38] indicate that our system BNJ [60] should be able to scale up to larger 
gene networks .  Several of our cooperative efforts are planned with plant biologists and therefore focus 
on simulation models of plant development [119] that produce time series of developmental state 
variables at daily or hourly granularity.  These can be used as forcing functions to validate the expression 
models we will produce.  In DESCRIBER, we shall evaluate probabilistic representations in comparison 
with others such as non-probabilistic relational models developed from use case analysis [21] and entity-
relational data modeling [110].  Our work on KDD [32] frequently compares inferential accuracy (or 
classification accuracy) in Bayesian networks to that of other representations.   This project focuses on 
structure learning and evaluation of robustness by statistical validation of discovered models. 

 Finally, we will avail our project of alternative sources of CF use cases and data from proteomics 
and beyond bioinformatics (see the attached letter from Zollman and Bennett) both as a safeguard 
against unexpected obstacles in development of DESCRIBER and to increase synergistic output.   

4 Teaching and Outreach Activities, July 2001 – July 2002 

4.1 Outreach and Technology Transfer 

4.1.1 Training experiences for students  

HIGH SCHOOL: Our integrative research and education program includes planned demonstrations, 
workshops, and web learning materials for 8-12th grade outreach.  We aim towards developing workshop 
activities for our university’s science and technology program for teen women, and we have administered 
the summer science institute for high school juniors and seniors in our department for the past 2 years.  
The latter has about 40% female participation, significantly higher than the admissions or retention rates 
in our undergraduate program.  We have noted a high level of interest among women in such summer 
programs who are our prospective majors in our programs or in the computational life sciences. 

EARLY UNDERGRADUATE: We introduce undergraduates – as early as their second year – to AI, machine 
learning, simulation, and visualization algorithms that they help implement and use in experiments.  
Furthermore, we believe that early undergraduate research experiences are a key to retention of female 
students and other underrepresented groups of students in engineering, giving them exposure to both 
theoretical background and commercial and industrial applications.  Our efforts are supported by 
collaboration with our university’s Women in Engineering and Science Program.  As a research scientist 
at NCSA, we were able to hire 40-60% women research programmers at the 11-12 through undergraduate 
level.  To bring participation of women closer to this level in our programs and encourage retention 
through graduate study, we have regularly lectured at our undergraduate engineering honors and 
computers in society (ethics and applications) seminars.  As departmental undergraduate honors chair, we 
have supervised numerous projects [51] and organized student seminars.  We are also planning integrative 
research experiences for undergraduates, including but not limited to honors students. 

ADVANCED UNDERGRADUATE AND POSTGRADUATE: We propose to leverage our existing research by 
incorporating our basic theoretical advances in machine learning and probabilistic reasoning into our 
intelligent systems courses, demonstrating their benefit to students through hands-on development 
experience with the software packages we have co-developed: Machine Learning in Java (MLJ) [63], 
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Bayesian Network Tools in Java (BNJ) [60], and NCSA D2K [91].  This leads to concurrent engineering 
of our research codes with the educational code base, offering undergraduates and new graduate students 
the chance to learn about state-of-the-field software tools from the original developers.  We have found 
that providing visual explanation of technologies to students facilitates the process of active learning by 
allowing them to interact with models, data, or algorithms.  We shall provide students with visual 
programming infrastructures [36, 91] for development of distributed, high-performance KDD and 
collaborative filtering systems and require them to develop user interfaces and visualizations of models.  
We expect benefits of this visualization approach to accrue to new interdisciplinary teaching programs in 
problem solving in the colleges of engineering, arts and sciences, agriculture, and architecture. 

 All but one of the upper-division courses offered in our KDD certificate program are open to 
undergraduates.  The data mining practicum has been used for three years (2000-2002) as the partial basis 
of an NSF research experience for undergraduates (REU) at the National Center for Supercomputing 
Applications (NCSA), in which we participated as senior personnel.  

4.1.2 Technology transfer and dissemination 

The DESCRIBER project shall advance the capability to efficiently and flexibly retrieve data, documents, 
software tools, and models from gene research repositories.  We discuss selected related work on 
bioinformatics data models and, in section Error! Reference source not found., document a strategy to 
produce and evaluate new probabilistic reasoning and data modeling software tools to meet the four 
milestones listed in section 3.  We shall then present our detailed plans for the integration of 
bioinformatics research results and intelligent systems tools into our curriculum on applied intelligent 
systems , and their dissemination to the user community. 

DISSEMINATION: Dissemination of results shall be achieved by development and distribution of open-
source software tools (augmenting our Java-based toolkits MLJ [63] and BNJ [60]), courseware, and 
models in an open, semi-structured data format (the XML Bayesian Network Interchange Format).  The 
software modules shall be added to Data to Knowledge (D2K), a suite of general-purpose, experimental 
codes managed by the National Center for Supercomputing Applications (NCSA). 

SOFTWARE RELEASES : Our key dissemination effort is the development of research codes applicable to 
real-world learning and inference problems, including collaborative filtering and the specific 
bioinformatics applications we have discussed.  This began over four years ago with the first ports of SGI 
MLC++ to other platforms [57] and continued with our work at NCSA applying this port in research on 
commercial data mining [65].  Over 300 software developers employed by our industrial partners in 
NCSA’s private sector program have been trained to use D2K [69] applications developed by the NCSA 
Automated Learning Group in conjunction with our group.  BNJ has been downloaded over 300 times 
from SourceForge since 04 May 2002 [59] and has 50 registered users worldwide at the time of this 
writing [60], and MLJ has been downloaded 100 times [62] and has 30 registered users to date [63].  As 
Error! Reference source not found. illustrates, we anticipate that they shall be refined the next 2-5 years 
through interaction with our local and international collaborators and instructors of KDD-related courses 
at this and other universities. 

LOCAL AND INTERNATIONAL MENTORING: In addition to funneling production-level research and 
development tools such as BNJ [60], MLJ [63], and D2K [69] back into the classroom [51], we have 
devoted focused effort to mentoring of students with potential to conduct research and become teachers in 
our subject area.  This began in 1998 with our supervision of graduate research assistants and 
undergraduate programmers at NCSA and continued with our participation (1999-2000) in the 
Engineering Learning Enhancement Action/Resource Network (LEA/RN) [67].  Since 2001 we have 
served as our department’s undergraduate honors advisor, organized spring seminars and summer 
workshops for this program, mentored a student who received a Goldwater scholarship for her 
contributions to BNJ [60], and begun serving as faculty advisor on a 2-student project in the Computing 
Research Association Collaborative Research Experience for Women (CREW) program (2002-2003) 
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whose proposal is currently under review.  We will involve postgraduate and postdoctoral mentoring into 
synergistic activities such as interdepartmental seminars. 

4.1.3 Outcomes and benefits of our education plan 

Incipient demand for researchers and developers obliges both academia and (medical, pharmacological, 
and other biotechnological) industry to train bioinformaticians.  To help meet this requirement, we have 
developed new courses and a formal interdisciplinary curriculum at both the graduate and undergraduate 
levels and integrated them into a research program that emphasizes rigorous specification, development, 
and assessment of KDD systems.  We are delivering these to both traditional campus-based students and 
remote students, many of whom are in the information technology workforce. We are also working to 
develop programs for outreach at pre-collegiate levels.  Our desired pedagogical benefits, concrete 
outcomes, and approaches are: 

? Curriculum improvement: courses, degree programs, materials to facilitate active learning  
? Early educational outreach: improved recruitment and retention of underrepresented groups 
? Undergraduate involvement in research: collaborative experience; technology transfer 
? Increased competence : mentoring from pre-collegiate through postdoctoral level 

4.1.4 Curriculum development: courses and degree programs  

Many curricula include a broad survey course in Artificial Intelligence (AI).  This introduction is a 
valuable experience for students.  Typically, it covers topics such as intelligent agent frameworks, 
problem solving, search, knowledge representation, logical semantics and inferential calculi, resolution 
theorem proving, basics of planning, probabilistic semantics and inferential techniques, machine learning, 
and assorted topics selected from among artificial neural networks, machine vision, robotics, and natural 
language processing. [108] Our experience with a mixed graduate-undergraduate sequence, starting with 
Introduction to Artificial Intelligence [51], and culminating in Advanced Topics in Artificial Intelligence 
[51], indicates that these alone do not provide enough time to cover machine learning in depth while 
retaining fundamental topics in planning and reasoning. 

 We therefore developed two new specialized courses that augment this core AI curriculum: a full-
semester course that focuses on machine learning and pattern recognition and an intensive practicum (4-5 
weeks) in implementation of high-performance data mining systems.  We first taught the course on 
machine learning in Fall, 1999 and converted it from a special topics course into an annual course in Fall, 
2001 [51].  We first taught the data mining applications course in Summer, 2000 and repeated it in 2001 
and 2002.  It consists of an integrated lecture and software engineering lab satisfying an implementation 
course requirement for our Master of Software Engineering (MSE) program. 

 Each student who completes the software portfolio requirement for our MSE degree must present 
three phases of work: first, methodology, requirements analysis, and design; second, formal specification, 
software quality assurance and testing plan, cost analysis, and third, an implementation synopsis, 
performance evaluation, and summary of experimental findings.  Projects in the area of KDD fit this 
framework because each studies a methodology for information and data modeling, performs 
requirements analysis for the end use of the intelligent system, and produces a design for a KDD system.  
Specification of KDD algorithms and representations is crucial to our research, while the final phase 
demands careful evaluation of experimental results.  We thus achieve a new synthesis of software 
engineering with intelligent systems, tailored to development of robust, practical, and general KDD. 

 In the machine learning, data mining, and advanced AI topics courses, students learn about new 
theoretical advances and state-of-the-practice implementation and empirical evaluation techniques.  We 
survey new literature in the field and students are required to submit individual paper reviews on weekly 
reading, which we have found helps students develop their ability to conduct independent research of the 
literature, critically assess their own research, present experimental results more cogently, and prepare 
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publications.  Meanwhile, we incorporate new programming tools that support KDD research [59, 60, 62, 
63] into each offering of the courses.  Students work on small individual programming projects in the 
machine learning course and team projects (in groups of 2-4) in the data mining and advanced AI courses.  
They are required to keep journals on implementation and experimental results and prepare a final 6-page 
project report in the style of a national workshop or conference (using the AAAI/IJCAI guidelines [4]).  
These reports are peer-reviewed and students are given the reviews at the end of the course. 

 Our new courses and new revisions of previously offered courses, are well integrated with our 
department’s courses on theory of computation and software engineering, and with our university’s 
curricula in mathematics, statistics, operations research and biologically-inspired and soft computing.  
Together, the five intelligent systems courses we have developed offer students a computational 
foundation for our integrative program of study in pattern recognition, intelligent systems, and data 
mining (PRISM) [22].  Degree certificates in PRISM shall be awarded to students in our MSE program 
and M.S., and Ph.D. programs university-wide who achieve proficiency relevant to KDD through 
electives in mathematics, statistics, and computational science and engineering, complete three of four 
core AI courses and at least one graduate-level database course, and achieve breadth in applications of 
learning and KDD systems.  The latter includes graduate level courses in computational molecular 
biology and computational genomics that comprise our new bioinformatics program. 

 Proposals for an undergraduate minor in bioinformatics and a graduate certificate program in PRISM 
are presently in preparation for submission to our university curriculum committees. 

4.1.5 Textbook development 

Integrating and complementing our efforts toward dissemination and outreach is the planned development 
of a textbook on implementation of probabilistic learning and reasoning systems using technical 
computing languages.  It shall provide simple, working code (available over the web) for well-known 
linear algebra and symbolic math tools such as MATLAB and Mathematica, statistical computing 
packages such as SAS , common analytical processing platforms such as Microsoft Excel, and functional 
programming languages such as Standard ML of New Jersey.  Rather than providing a heterogeneous, 
disorganized mixture of implementations of learning algorithms, our textbook project undertakes to 
document these algorithms in the simplest and clearest way by illustrating common data structures and 
representations of hypotheses using many common technical computing tools.  Our goal is to bring 
probabilistic and reasoning and the tools supporting our research to as wide an audience as possible.  
Therefore we use a complementary approach of developing open-source software [59, 62] both in 
general-purpose imperative languages such as Java and in technical computing languages.  This trades off 
portability and interoperability (Java) against readability and accessibility (MATLAB, etc.) to 
bioinformaticians who may be new to both programming and intelligent systems. 

4.1.6 Assessment 

To assess new course content, materials, and curricula (degree program requirements), we shall work with 
our Office of Educational Innovation and Evaluation (OEIE) and the independent Individual 
Development and Education Assessment (IDEA) Center [66].  We are preparing a separate research and 
curriculum development proposal [22] to support work with both organizations to evaluate pedagogical 
outcomes.  We shall also consult with our collaborators at national and industrial labs to make sure our 
program includes the requisite knowledge for professional practice of bioinformatics and PRISM. 
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