
i

TIME SERIES LEARNING WITH PROBABILISTIC NETWORK COMPOSITES

BY

WILLIAM HENRY HSU

B.S., The Johns Hopkins University, 1993
M.S.E., The Johns Hopkins University, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1998

Urbana, Illinois

ii

iii

TIME SERIES LEARNING WITH PROBABILISTIC NETWORK COMPOSITES

William Henry Hsu, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1998
Sylvian R. Ray, Advisor

The purpose of this research is to extend the theory of uncertain reasoning over time

through integrated, multi-strategy learning. Its focus is ondecomposable, concept learning

problems for classification of spatiotemporal sequences. Systematic methods of task

decomposition using attribute-driven methods, especially attributepartitioning , are investigated.

This leads to a novel and important type of unsupervised learning in which the feature

construction (or extraction) step is modified to account for multiple sources of data and to

systematically search for embedded temporal patterns. This modified technique is combined with

traditional cluster definition methods to provide an effective mechanism for decomposition of

time series learning problems. The decomposition process interacts with model selection from a

collection of probabilistic models such as temporal artificial neural networks and temporal

Bayesian networks. Models are chosen using a new quantitative (metric-based) approach that

estimates expected performance of a learning architecture, algorithm, and mixture model on a

newly defined subproblem. By mapping subproblems to customized configurations of

probabilistic networks for time series learning, a hierarchical, supervised learning system with

enhanced generalization quality can be automatically built. The system can improve data fusion

capability (overall localization accuracy and precision), classification accuracy, and network

complexity on a variety of decomposable time series learning problems. Experimental evaluation

indicates potential advances in large-scale, applied time series analysis (especially prediction and

monitoring of complex processes). The research reported in this dissertation contributes to the

theoretical understanding of so-calledwrapper systems for high-level parameter adjustment in

inductive learning.

iv

History is Philosophy teaching by examples.

Thucydides (c. 460-c. 400 B.C.), Athenian historian.

Quoted by Dionysius of Halicarnassus in:Ars Rhetorica, Chapter 11, Section 2.

v

Acknowledgements

First and foremost, my utmost gratitude goes to my advisor, Sylvian R. Ray. Professor

Ray is one of those rare leaders who has shepherded not one but several research groups of the

highest caliber during his years in academia. To associate with him has truly been an honor and a

privilege. He is a true scholar, a generous and conscientious mentor, and a gentleman in every

sense of the word. Where our research interests differ, he has always lent an ear and an open

mind, and where they are similar, he has given tirelessly of his time, formidable experience, and

piercing insight. To emulate him is my lifelong aspiration.

I thank the members of my committee: David E. Goldberg, Mehdi T. Harandi, and David

C. Wilkins. Thanks to Professor Goldberg for an introduction to genetic algorithms and global

optimization, but also for teaching by example how to be a better engineer. The educational

clarity and the irrepressible drive for which he is known, and a few questions he asked at

important junctures, have been a great help to me. Professor Harandi introduced me to a number

of useful concepts in knowledge-based programming and software engineering, but equally

important, gave me an education in responsible research. He sets a high standard in research and

encourages others to follow, and I am grateful for the chance to participate in many interesting

and substantial discussions with him and his group. I also appreciate his good advice on some

important efforts, including, but not limited to, my dissertation. Finally, thanks to Professor

Wilkins for supporting me as a research assistant and for the opportunity to work in his

Knowledge-Based Systems Laboratory throughout most of my Ph.D. studies; it is a unique and

diverse group to which I am glad to have contributed. Interacting with the many KBS members

has been an interesting experience, and has led to a number of productive collaborations in

knowledge-based systems, machine learning, and applied research.

Thanks to my professors, classmates, and friends from my undergraduate school, the

Johns Hopkins University, for inspiring my appetite for research. I am especially grateful for the

tutelage of Amy Zwarico and Simon Kasif, who gave me an early introduction to software

engineering and intelligent systems.

Special thanks to Jesse Reichler and Chris Seguin, members of Professor Ray’s research

group, who have patiently listened to my research ideas and presentations (and rehearsals) on

numerous occasions. Equally important, they taught me about areas that they knew better, and

vi

held lively and rewarding discussions with me and with others during our years at UIUC. I look

forward to working and associating with both of them for many years to come.

My thanks to the following researchers at UIUC for valuable discussions about my thesis

research and for their candid and helpful feedback: Brendan Frey, Thomas Huang, Larry Rendell,

Dan Roth, and Benjamin Wah. Thanks also to the following researchers at other universities and

companies, who have given me feedback and advice during my years as a graduate student:

Robert Hecht-Nielsen, Rob Holte, Kai-Fu Lee, and Mehran Sahami. Thanks especially to Dr.

Hecht-Nielsen, who gave me advice on selecting a thesis topic at the 1996 World Congress on

Neural Networks. Also, thanks to Mehran Sahami for introducing me to related work on model

selection.

My appreciation and gratitude to experts in the areas of applied climatology, agricultural

engineering, agricultural economics, crop sciences, and computational methods for precision

agriculture who consulted me about experimental data. These include: Don Bullock, Mike

Clark, Tom Frank, Steven Hollinger, Don Holt, Doug Johnston, Ken Kunkel, John Reid, Bob

Scott, and Don Wilhite.

Thanks also to the students, research staff, and alumni of the UIUC Department of

Computer Science and the Beckman Institute, especially Eugene Grois, Ole Jakob Mengshoel,

and Ricardo Vilalta. I’d like to give special acknowledgement to the undergraduates at the KBS

Lab who worked on research projects with me during my time there, especially: Nathan Gettings

Yu Pan, and Victoria Lease. Nathan, Yu Pan, and Tori assisted with some experiments and

implementations relevant to my dissertation, and were also an important wellspring of culture for

me during the more grueling months of my research. Additionally, my thesis could not have been

completed without the friendly, helpful, courteous, and professional administrative staff at the

Beckman Institute, Aviation Research Lab, and Department of Computer Science. None of us

can do it without you!

Last but certainly not least, I thank my parents for all their encouragement and love.

I have thanked a great many people, yet I know I have left some out. Mei-Yuh Hwang

quoted a proverb in the acknowledgements section of her thesis that advises: when one is blessed

with too many people to thank, one should thank God. I do.

vii

1. INTRODUCTION ..1

1.1 Spatiotemporal Sequence Learning with Probabilistic Networks...2
1.1.1 Statistical and Bayesian Approaches to Time Series Learning ...2
1.1.2 Hierarchical Decomposition of Learning Problems ...3
1.1.3 Constructive Induction and Model Selection: State of the Field...4
1.1.4 Heterogeneous Time Series, Decomposable Problems, and Data Fusion..................................5
1.1.5 System Overview ...7

1.2 Problem Redefinition for Concept Learning from Time Series..8
1.2.1 Constructive Induction: Adaptation of Attribute-Based Methods ...8
1.2.2 Change of Representation in Time Series..8
1.2.3 Control of Inductive Bias and Relevance Determinination...8

1.3 Model Selection for Concept Learning from Time Series...9
1.3.1 Model Selection in Probabilistic Networks..9
1.3.2 Metric-Based Methods ...10
1.3.3 Multiple Model Selection: A New Information-Theoretic Approach......................................10

1.4 Multi-strategy Models..11
1.4.1 Applications of Multi-strategy Learning in Probabilistic Networks..11
1.4.2 Hybrid, Mixture, and Ensemble Models..12
1.4.3 Data Fusion in Multi-strategy Models...12

1.5 Temporal Probabilistic Networks..14
1.5.1 Artificial Neural Networks ...14
1.5.2 Bayesian Networks and Other Graphical Decision Models..14
1.5.3 Temporal Probabilistic Networks: Learning and Pattern Representation14

2. ATTRIBUTE-DRIVEN PROBLEM DECOMPOSITION FOR COMPOSITE
LEARNING ... 16

2.1 Overview of Attribute-Driven Decomposition...17
2.1.1 Subset Selection and Partitioning..17
2.1.2 Intermediate Concepts and Attribute-Driven Decomposition ...18
2.1.3 Role of Attribute Partitioning in Model Selection..19

2.2 Decomposition of Learning Tasks ...20
2.2.1 Decomposition by Attribute Partitioning versus Subset Selection ..21

2.2.1.1 State Space Formulation ...22
2.2.1.2 Partition Search ..24

2.2.2 Selective Versus Constructive Induction for Problem Decomposition....................................26
2.2.3 Role of Attribute Extraction in Time Series Learning..27

2.3 Formation of Intermediate Concepts...27
2.3.1 Role of Attribute Grouping in Intermediate Concept Formation ..27
2.3.2 Related Research on Intermediate Concept Formation...28
2.3.3 Problem Definition for Learning Subtasks ..28

2.4 Model Selection with Attribute Subsets and Partitions...29
2.4.1 Single versus Multiple Model Selection..29
2.4.2 Role of Problem Decomposition in Model Selection ...29
2.4.3 Metrics and Attribute Evaluation ..30

viii

2.5 Application to Composite Learning...31
2.5.1 Attribute-Driven Methods for Composite Learning ...31
2.5.2 Integration of Attribute-Driven Decomposition with Learning Components31
2.5.3 Data Fusion and Attribute Partitioning..33

3. MODEL SELECTION AND COMPOSITE LEARNING 34

3.1 Overview of Model Selection for Composite Learning..34
3.1.1 Hybrid Learning Algorithms and Model Selection ..35

3.1.1.1 Rationale for Coarse-Grained Model Selection..35
3.1.1.2 Model Selection versus Model Adaptation ..36

3.1.2 Composites: A Formal Model...37
3.1.3 Synthesis of Composites...39

3.2 Quantitative Theory of Metric-Based Composite Learning..40
3.2.1 Metric-Based Model Selection..40
3.2.2 Model Selection for Heterogeneous Time Series...42
3.2.3 Selecting From a Collection of Learning Components...45

3.3 Learning Architectures for Time Series..47
3.3.1 Architectural Components: Time Series Models..47
3.3.2 Applicable Methods ...48
3.3.3 Metrics for Selecting Architectures...48

3.4 Learning Methods..49
3.4.1 Mixture Models and Algorithmic Components..50
3.4.2 Combining Architectures with Methods..52
3.4.3 Metrics for Selecting Methods..53

3.5 Theory and Practice of Composite Learning...54
3.5.1 Properties of Composite Learning...54
3.5.2 Calibration of Metrics From Corpora..54
3.5.3 Normalization and Application of Metrics ..55

4. HIERARCHICAL MIXTURES AND SUPERVISED INDUCTIVE LEARNING
.. 56

4.1 Data Fusion and Probabilistic Network Composites...57
4.1.1 Application of Hierarchical Mixture Models to Data Fusion..57
4.1.2 Combining Classifiers for Decomposable Time Series ..60

4.2 Composite Learning with Hierarchical Mixtures of Experts (HME)61
4.2.1 Adaptation of HME to Multi-strategy Learning...62
4.2.2 Learning Procedures for Multi-strategy HME ...64

4.3 Composite Learning with Specialist-Moderator (SM) Networks..64
4.3.1 Adaptation of SM Networks to Multi-strategy Learning..64
4.3.2 Learning Procedures for Multi-strategy SM Networks...68

4.4 Learning System Integration ...69
4.4.1 Interaction among Subproblems in Data Fusion ..69
4.4.2 Predicting Integrated Performance..69

4.5 Properties of Hierarchical Mixture Models...70

ix

4.5.1 Network Complexity..70
4.5.2 Variance Reduction..70

5. EXPERIMENTAL EVALUATION AND RESULTS.. 72

5.1 Hierarchical Mixtures and Decomposition of Learning Tasks ...72
5.1.1 Proof-of-Concept: Multiple Models for Heterogeneous Time Series......................................72
5.1.2 Simulated and Actual Model Integration...75
5.1.3 Hierarchical Mixtures for Sensor Fusion...77

5.2 Metric-Based Model Selection ...80
5.2.1 Selecting Learning Architectures..80
5.2.2 Selecting Mixture Models...81

5.3 Partition Search ...82
5.3.1 Improvements in Classification Accuracy ...82
5.3.2 Improvements in Learning Efficiency...84

5.4 Integrated Learning System: Comparisons...85
5.4.1 Other Inducers ...85
5.4.2 Non-Modular Probabilistic Networks ...87
5.4.3 Knowledge Based Decomposition ..90

6. ANALYSIS AND CONCLUSIONS .. 91

6.1 Interpretation of Empirical Results...91
6.1.1 Scientific Significance..91
6.1.2 Tradeoffs ...93
6.1.3 Representativeness of Test Beds ...94

6.2 Synopsis of Novel Contributions..95
6.2.1 Advances in Quantitative Theory..95
6.2.2 Summary of Ramifications and Significance...97

6.3 Future Work ..100
6.3.1 Improving Performance in Test Bed Domains...100
6.3.2 Extended Applications ...100
6.3.3 Other Domains...102

A. COMBINATORIAL ANALYSES ... 103

1. Growth of Bn and S(n,2)..103

2. Theoretical Speedup due to Prescriptive Metrics ...105

3. Factorization properties ..106

B. IMPLEMENTATION OF LEARNING ARCHITECTURES AND METHODS
110

1. Time Series Learning Architectures..110
1.1 Artificial Neural Networks ...110

x

1.1.1 Simple Recurrent Networks..111
1.1.2 Time-Delay Neural Networks...112
1.1.3 Gamma Networks...113

1.2 Bayesian Networks...113
1.2.1 Temporal Naïve Bayes ...113
1.2.2 Hidden Markov Models..114

2. Training Algorithms ..114
2.1 Gradient Optimization..114
2.2 Expectation-Maximization (EM) ..114
2.3 Markov chain Monte Carlo (MCMC) Methods ...115

3. Mixture Models..115
3.1 Specialist-Moderator (SM) ...115
3.2 Hierarchical Mixtures of Experts (HME) ..116

C. METRICS ... 117

1. Architectural: Predicting Performance of Learning Models ..117
1.1 Temporal ANNs: Determining the Memory Form...117

1.1.1 Kernel Functions..117
1.1.2 Conditional Entropy ...119

1.2 Temporal Naïve Bayes: Relevance-Based Evaluation Metrics ...120
1.3 Hidden Markov Models: Test-Set Perplexity...121

2. Distributional: Predicting Performance of Learning Methods...122
2.1 Type of Hierarchical Mixture ...122

2.1.1 Factorization Score...122
2.1.2 Modular Mutual Information Score...123

2.2 Algorithms...126
2.2.1 Value of Missing Data..126
2.2.2 Sample Complexity ..127

D. EXPERIMENTAL METHODOLOGY... 128

1. Experiments using Metrics ..128
1.1 Techniques and Lessons Learned from Heterogeneous File Compression128
1.2 Adaptation to Learning from Heterogeneous Time Series..128

2. Corpora for Experimentation..129
2.1 Desired Properties ..129

2.1.1 Heterogeneity of Time Series..130
2.1.2 Decomposability of Problems ...131

2.2 Synthesis of Corpora ..131
2.3 Experimental Use of Corpora ...132

2.3.1 Fitting Normalization Functions ...132
2.3.2 Testing Metrics and Learning Components ...132
2.3.3 Testing Partition Search..132

REFERENCES.. 134

1

1. Introduction

The purpose of this research is to improve existing methods for inductive concept learning

from time series. A time series is, colloquially, any data set whose points are indexed by time

and organized in nondecreasing order.1 Time series learning refers to a variety of learning

problems, including prediction of the next point in a sequence andconcept learningwhere each

data vector, or point, is an exemplar and the task is to classify the next (“test”) exemplar given

previous exemplars as training data. In traditional concept learning formulations, the order of

presentation of exemplars is relevant only to the learning algorithm (if at all), not to the classifier

(rule or other decision structure) that is produced. In time series classification (concept learning),

however, it is generally relevant to both. Thus, the definition of concept learning is extended to

time series by taking into account all previously observed data. Furthermore, class membership

(i.e., the learning target) may be binary, general discrete-valued (or nominal), or continuous-

valued. This dissertation therefore focuses ondiscrete classificationover discrete time series.

This chapter describes thewrapperapproach to inductive learning and how it has previously

been used to enhance the performance (classification accuracy) of supervised learning systems.

In this dissertation, I show how wrappers forattribute subset selectioncan also be incorporated

into unsupervised learning− specifically, constructive induction− for redefinition of learning

problems. This approach is also referred to aschange of representationand optimization of

inductive bias. I adapt the constructive induction framework to decomposition of learning tasks

by substituting attributepartitioning for attribute subset selection. This leads to definition of

multiple subproblems instead of a single reformulated problem. This affords the opportunity to

apply multi-strategy learning; for time series, the choice of learning technique is based on the

type of temporal, stochastic patterns embedded in the data. I develop a metric-based technique

for identifying the closest type of pattern from among known, characteristic types. This allows

each subproblem to be mapped to the most appropriate model (i.e., learning architecture), and

also allows a (hierarchical) mixture model and training algorithm to be automatically selected for

the entire decomposed problem. The benefit to supervised learning is reduced variance through

multiple models (which I will refer to ascomposites) and reduced model complexity through

problem decomposition and change of representation.

1 More rigorously, we may require that the time index be nonnegative and that certain conventions be
consistent for a training set and its continuation. Typical choices, regarding the representation of time
series specifically, include discrete versus continuous time, synchronous versus asynchronous data vectors
and variables (within each data vector), etc. [BJR94, Ch96].

2

1.1 Spatiotemporal Sequence Learning with Probabilistic Networks

A spatiotemporalsequence is a data set whose points are ordered by location and time.

Spatiotemporal sequences arise in analytical applications such as time series prediction and

monitoring [GW94, Ne96], sensor integration [SM93, Se98], and multimodal human-computer

intelligent interaction. Learning to classify time series is an important capability of intelligent

systems for such applications. Many problems and types of knowledge in intelligent reasoning

with time series, such as diagnostic monitoring, prediction (or forecasting), and control

automation can be represented as classification.

This section presents existing methods for concept learning from time series. These include

local optimization methods such as delta rule learning (orbackpropagationof error) [MR86,

Ha94] and expectation-maximization (EM) [DLR77], as well as global optimization methods

such as Markov chain Monte Carlo estimation [Ne96]. I begin by outlining the general

framework of time series learning using probabilistic networks. I then discuss how certain time

series learning problems can be processed using attribute-driven methods to obtain more tractable

subproblems, to boost classification accuracy, and to facilitate multi-strategy supervised learing.

This leads to a system design that integrates unsupervised learning and model selection to map

each subproblem to the most appropriate configuration of probabilistic network. In designing a

systematic decomposition and metric-based model selection system, I address a number of

shortcomings of existing time series learning methods with respect toheterogeneoustime series.

In Section 1.1.4, I give a precise definition of heterogeneous time series and give examples of

real-world analytical problems where they arise. Finally, I discuss the role of hierarchicalmixture

modelsin integrated, multi-strategy learning systems, especially their benefits for time series

learning using multiple probabilistic networks.

1.1.1 Statistical and Bayesian Approaches to Time Series Learning

Time series occur in many varieties. Some are periodic; some contain values that are linear

combinations of preceding ones; some observe a finite limit on the duration of values (i.e., the

number of consecutive data points with the same value for a particular variable); and some

observe attenuated growth and decay of values. Theseembedded pattern typesdescribe the way

that values of a time series evolve as a function of time, and are sometimes referred to asmemory

forms [Mo94]. A memory form can be characterized in terms of a hypotheticalprocess[TK84]

that generates patterns within the observed data (hence the termembedded). A memory form can

be represented using various models. Examples include: generalized linear models in the case of

3

periodicity [MN83]; moving average models in the case of linear combinations [Mo94, MMR97],

finite state models and grammars in the case of finite-duration patterns [Le89, Ra90], and

exponential trace models in the case of attenuated growth and decay [Mo94, RK96, MMR97].

All of the above memory forms can exhibit noise, or uncertainty. The noisy pattern generator

can be characterized as a stochastic process. In certain cases, the probability distributions that

describe this process have specific structure. This allows information abut the stochastic

component of a time series to be encoded as model parameters. Examples include graphical state

transition models with distribution over transitions (a probabilistic type ofMoore modelor Mealy

model, also known asReber grammars[RK96]), or similar state models with distributions over

transitions and outputs (also known ashidden Markov models or HMMs[Ra90]).

This dissertation focuses on graphical models of probability, specifically,probabilistic

networks, or connectionist networks, as the models (hypothesis languages) used in inductive

concept learning. These include simple recurrent networks [El90, Ha94, Mo94, Ha95, PL98],

HMMs [Ra90, Le89], and temporal Bayesian networks [Pe88, He96]. Network architectures are

further discussed in Section 1.2, Chapter 2, and Appendix B.1. The structure of a stochastic

process can be learned using local and global optimization methods that fit the model parameters.

For example, gradient learning can be applied to fit generalized linear models and multilayer

perceptrons (also called feedforward artificial neural networks) [MR86], as well as other

probabilistic networks, such as Bayesian networks and HMMs [BM94, RN95].Expectation-

Maximization(EM) [DLR77, BM94] is another local optimization algorithm that can be used to

estimate parameters in graphical models; it has the added capability of being able to estimate

missing data. Finally, Bayesian methods for global optimization include theMarkov chain Monte

Carlo family [Ne93, Gi96], which performs integration by random sampling from the conditional

distribution of models given observed data [KGV83, AHS85, Ne92]. Appendix B.2 gives in-

depth details of the time series learning algorithms applied in this dissertation.

1.1.2 Hierarchical Decomposition of Learning Problems

A key research issue addressed in this dissertation ischange of representationfor time series

learning. Even more than in general inductive learning, change of representation is ubiquitous in

analysis of spatiotemporal sequences. It occurs due to signal processing, multimodal integration

of sensors and data sources, differences in temporal and spatial scales, geographic projections and

subdivision, and operations for dealing with missing data over space and time (interpolation,

downsampling, and Bayesian estimation). I investigate a particularly important form of change

4

of representation for real-world time series:partitioning of input. In Chapter 2, I will describe

attribute-driven methods (subset selection and partitioning) for problem reformulation, and

explain how these methods correspond to thefeature construction and extractionphase of

constructive induction [Ma89, RS90, Gu91, Do96]. Partitioning the input of a time series

learning problem into subsets of attributes is the first step of a problem decomposition process

that enables numerous opportunities for improved supervised learning. The benefits are

discussed throughout Chapters 2, 3, and 4 and empirically demonstrated in Chapter 5. In brief,

decomposing a learning problem by attribute partitioning results in the formation of a hierarchy

of problem definitions that facilitates model selection and data fusion.

1.1.3 Constructive Induction and Model Selection: State of the Field

The decomposition process interacts with model selection from a collection of probabilistic

models such as temporal artificial neural networks and temporal Bayesian networks.

Traditionally, constructive induction has been directed toward such concerns ashypothesis

preference[Mi83, Ma89, RS90, Do96, Io96, Pe97, Vi98], i.e., the formulation of new descriptors

for concept classes that permit more tractable and accurate supervised learning. New descriptors

are formed based upon the initial problem specification (theground attributes, or instance space

[RS90, Mi97]), the empirical characteristics of the training data, and prior knowledge about the

test data (thedesired inference space[DB98]). Similarly, decomposition of learning problems

has dealt with focusing different induction algorithms (or components of amixture model

[RCK89, JJB91, JJNH91, JJ93, JJ94]) on different parts of the hypothesis space, to more easily

describe the concept classes. The difference between most constructive induction and

decomposition algorithms is that the former produces a single reformulated learning problem,

while the latter produces several. In Chapter 2, I show how attribute partitioning meets objectives

of both constructive induction and problem decomposition.

Constructive induction can be divided into two phases: reformulation of input and internal

representations (feature construction[Do96] andfeature extraction[KJ97]) and reformulation of

the hypothesis language, or target concept (cluster definition[Do96]). Feature construction and

extraction apply operators to synthesize new (compound) attributes from the original (ground)

attributes in the input specification. By contrast, the method ofattribute subset selection[Ki92,

Ca93, Ko94, Ko95, KJ97] identifies those inputs upon which to focus an induction algorithm’s

attention. It does not, however, inherently perform any synthesis of new hypothesis descriptors.

Subset selection is tied to the problem ofautomatic relevance determination(ARD), which

5

estimates the capability of an attribute to distinguish the output class in the context of other

attributes [He91, Ne96]. In Chapter 2, I explain how attribute subset selection and partitioning

can augment, or be substituted, for feature construction in a constructive induction system. The

function of this modified system depends on whether subset selection or partitioning is used; in

this dissertation, I focus on partitioning, whose purpose is to produce multiple subproblem

definitions. An evaluation function is required to ensure that these definitions constitute a good

decompositionof a time series learning problem.

One of the main novel contributions of this dissertation is an elucidation of the relationship

among constructive induction (by attribute partitioning), mixture models, andmodel selection.

Model selection is the problem of identifying a hypothesis language that is appropriate to the

characteristics of a training data set [GBD92, Hj94, Sc97]. Chapter 3 focuses on how model

selection can be improved, given a good decomposition of a task. Each model in my learning

system is associated with a characteristic pattern (memory form) and identifiable types of prior ad

conditional probability distributions. This association allows the most appropriate learning

architecture, mixture model, and training algorithm to be applied for each subset of training data

generated by constructive induction. The type of model selection I apply iscoarse-grained

(situated at the level of learning architecture− i.e., thetype of probabilistic networkto use) and

quantitative (metric-based− i.e., based upon a measure of expected performance). Equally

important, it is customized for multi-strategy learning where every choice of “strategy” is a

probabilistic network for time series learning. This common trait simplifies the model selection

framework and makes the system more uniform, but does not restrict its applicability in practice.

1.1.4 Heterogeneous Time Series, Decomposable Problems, and Data Fusion

By mapping subproblems to customized configurations of probabilistic networks for time

series learning, a hierarchical, supervised learning system with enhanced generalization quality

can be automatically built. This dissertation addresses data fusion [SM93] using different types

of hierarchical mixture models. Data fusion is of particular importance to learning from

heterogeneoustime series, which I define here, by way of an analogy.

A heterogeneous fileis any file containing multiple types of data [HZ95]. In operating

systems applications (data compression, information retrieval, Internet communications), this is

well defined: audio, text, graphics, video (or, more specifically, formats thereof) are file types. A

heterogeneous data setis any data set containing multiple types of data. Because “types of data”

6

is a largely unrestricted description, this definition is much more nebulous than that for files−

that is, until the learning environment (sources of data, preprocessing element, knowledge base,

and performance element) is defined [CF82, Mi97]. Section 1.5 and Chapter 2 present this

definition.

A heterogeneous time seriesis a data set containing multiple types of temporal data. There

are several ways to decompose temporal data: by the location of the source (spatiotemporal

maps); by granularity (i.e., frequency) of the sample; or by prior information about the source

(e.g., an organizational specification for multiple sensors). This dissertation considers each of

these, but focuses on the third aspect of decomposition. The goal of decomposition is to find a

partitioning of the training data that results in the highest prediction accuracy on test data. To

begin formalizing this notion, I begin by definingdecomposability, in terms of its criteria as

addressed in this research:

Definition. Given an attribute-based mechanism for partitioning of time series data sets, an

assortment of learning models, a quantitative model selection mechanism, and a data fusion

mechanism, a particular time series learning problem isdecomposableif it admits separation into

subproblems of lower complexity based on these mechanisms.

The attribute-based mechanism for partitioning is the topic of Chapter 2. The assortment of

learning models (which comprises the learning architecture and the learning method) and the

model selection mechanism are both formalized through the definition and explanation of

composite learningin Chapter 3. The data fusion part of this definition is formalized in Chapter

4. Finally, analysis of overall network complexity is presented in Chapter 5.

7

1.1.5 System Overview

Learning Architecture

Subproblem
Definition Model

Selection

Learning
Techniques

Multiattribute
Time Series

Attribute
Partitioning ?

?
?

?

Partition Evaluator

Learning
Method

Data
Fusion

Overall
Prediction

Figure 1. Overview of the integrated, multi-strategy learning system for time series.

Figure 1 depicts a learning system for decomposable, multi-attribute time series. The central

elements of this system are:

1. A systematic mechanism for generating andevaluating candidate subproblem

definitions in terms ofattribute partitioning .2

2. A metric-basedmodel selectioncomponent that maps subproblem definitions to learning

techniques.

3. A data fusionmechanism for integration of multiple models.

Chapter 3 presentsSelect-Net, a high-level algorithm for building a completelearning

method specification (composite) and training subnetworks as part of a system for multi-strategy

learning. This system incorporates attribute partitioning into constructive induction to obtain

multiple problem definitions (decomposition of learning tasks); brings together constructive

induction and mixture modeling to achieve systematic definition of learning techniques; and

integrates both with metric-based model selection tosearch for efficient hypothesis preferences.

2 As I explain in Chapter 2, this may be a naïve (exhaustive) enumeration mechanism, but is more
realistically implemented as astate space search.

8

1.2 Problem Redefinition for Concept Learning from Time Series

This section briefly surveys existing methods for problem reformulation, their shortcomings

and assumptions, and potential application to time series learning.

1.2.1 Constructive Induction: Adaptation of Attribute-Based Methods

In probabilistic network learning, constructive induction methods tend to focus on literal

cluster definition[Do96] rather than a systematized program of feature construction or extraction3

and cluster definition. Cluster definition techniques are numerous, and include self-organizing

maps and competitive clustering (aka vector quantization) [Ha94, Wa85]. The approach I report

in Chapter 2 follows a regime of unsupervised inductive learning that is conventional in the

practice of symbolic machine learning [Mi83], but has been adapted here forseminumerical

learning (sometimes referred to assubsymbolic). The attribute-driven methods that I incorporate

into an unsupervised learning framework perform what Michalski categorizes as both

constructiveandselectiveinduction [Mi83].

1.2.2 Change of Representation in Time Series

Many previous theoretical studies have ascertained a need for change of representation in

inductive learning [Be90, RS90, RR93, Io96, Mi97]. Systematic search for a beneficial change of

representation amounts to a search for inductive bias [Mi80, Be90]. Recent work on constructive

induction includes knowledge-guided methods [Do96], relational projections [Pe97],

decomposable models [Vi98], explicit search for change of representation to boost supervised

learning performance [Io96], and other algorithms for systematic optimization of hypothesis

representation [Ha89, WM94, Mi97]. A common theme of this work, and of the expanding body

of research on attribute subset selection [Ki92, Ca93, Ko94, Ko95], is that the hypothesis

language in a supervised learning problem may be cast as a group oftunable parameters. This is

the design philosophy behind attribute-based problem decomposition, described in Chapter 2.

1.2.3 Control of Inductive Bias and Relevance Determination

Subset selection is tied to the problem ofautomatic relevance determination(ARD), a process

that, informally, is designed to assign the proper weight to attributes based upon their importance.

9

This is measured as the discriminatory capability of an attribute, given other attributes that may

be included. Formal Bayesian and syntactic characterizations of relevance can be found in the

work of Heckerman [He91], Neal [Ne96], and Kohavi and John [KJ97]. The significance of

attribute partitioning to ARD is that partitioning extends the notion that relevance is a joint

property of a group of attributes. It applies criteria similar to those used to “shrink” a set of

attributes down to a minimal set of relevant ones. These criteria treat each separate subproblem

as a candidate subset of attributes, but account for the imminent use of this subset for a newly

defined target concept (found through cluster definition) and within a larger context (the mixture

model for the entire attribute partition).

1.3 Model Selection for Concept Learning from Time Series

This section presents a synopsis of the model selection concepts that are introduced or

investigated in this dissertation, and gives a map to the sections where they are explained and

evaluated.

1.3.1 Model Selection in Probabilistic Networks

A central innovation of this dissertation is the development of a system for specifying the

learning technique to use for each component of a time series learning problem. While the

general methodology of model selection is not new [St77], nor is its use in technique selection for

inductive learning [Sc97, EVA98], its application to time series through the explicit

characterization of memory forms is a novel contribution of this research. I will refer to the

specification of learning techniques for each component of a partitioned concept learning problem

as a composite(specifically, probabilistic network compositesfor the kind of specifications

generated in this particular learning system). I will also refer to the process of training

probabilistic networks for each subproblem and for a hierarchical mixture model – according to

this specification – ascomposite learning.

Each model in my learning system is associated with a characteristic pattern (memory form)

and identifiable type of probability distribution over the training data. The former is a high-level

descriptor of the conditional distribution of model parametersfor a particular model

configuration (the architecture, connectivity, and size),given the observed data. That is, certain

entire families of temporal probabilistic networks are good or bad for a particular data set; the

3 Because this dissertation deals with constructive induction based onattribute partitioning, it will not

10

degree of match between the memory form and this family can be estimated by a metric. This

metric is a predictor of performance by members of this family, if one is chosen as the model type

for a subset of the data. The latter describes the estimated conditional distribution of mixture

model parameters,for a particular type of mixture, given the data, as well as estimated priors for

a particular model configuration.

1.3.2 Metric-Based Methods

Model selection has been studied in the statistical inference literature for many years [St77,

Hj94], but has been addressed systematically in machine learning only recently [GBD92, Hj94].

Even more recent is the advent of metric-based methods [Sc97] for model selection. The purpose

of metric-based methods in this research is to counteract the instability of certain configurations

of probabilistic networks that make it difficult to conclusively compare the performance of two

candidate configurations. Although statistical evaluation and validation systems, such asDELVE

[RNH+96], have been developed for just this purpose, tracking the performance of a learning

system across different samples remains an elusive task [Gr92, Ko95, KSD96]. The problems

faced by researchers trying to compare network performance are aggravated when the data comes

from a time series and the networks being evaluated belong to a hierarchical mixture model. Even

if it were feasible to track performance on continuations of the time series [GW94, Mo94],

subject to the dynamics of the learning system [JJ94], it would introduce another level of

complication to consider all the different combinations of learning architectureswithin the

mixture model. Yet the comparative results on these combination are precisely what is needed to

properly evaluate candidate partitions and architectures given an already-selected mixture model

and training algorithm. This is the motivation for using metrics for estimating expected

performance of a learning technique, instead of the more orthodox method of gathering

descriptive statisticson network performance using every combination. This design philosophy

is further explained in Chapter 3.

1.3.3 Multiple Model Selection: A New Information-Theoretic Approach

Having postulated a rationale for metric-based model selection over multiple subproblems, it

remains to formulate a hypothetical criterion for expected performance. In fact, this is one of the

important design issues for the research reported in this dissertation. Chapter 3 describes the

make distinctions between feature construction and extraction. The interested reader is referred to [Ki86].

11

organization of mydatabase of learning techniquesand the metrics for selecting particular

learning architectures(network types) andlearning methods(training algorithms and mixture

models) from it. The principle that motivated the design of metrics for selecting network types is

that learning performance for a temporal probabilistic network is correlated with the degree to

which its corresponding memory form occurs in the data.

The memory forms that I study in this dissertation include theautoregressive integrated

moving average(ARIMA) family [BJR94, Hj94, Mo94, Ch96, MMR97, PL98], one that includes

the autoregressive moving average(ARMA), autoregressive(AR), and moving average(MA)

memory forms. These memory forms and their temporal artificial neural network (ANN)

realizations [El90, DP92, Mo94, MMR97, PL98] are documented in Chapter 3, where I present a

new approach to quantitative model selection that is based upon information theory [CT91]. In

short, the metrics are designed to measure the decrease in uncertainty regarding predictions on

test cases, or continuations of the time series, after the data set has been transformed according to

a particular time series model. This transformation makes available all of the historical

information that can be represented by the memory type of the candidate model, and the change

in uncertainty is simply measured by the mutual information (i.e., the decrease in entropy due to

conditioning on historical values). A similar approach was used to develop metrics for selecting a

training algorithm and mixture model for a chosen partition of some time series data set, as

documented in Chapter 3.

1.4 Multi-strategy Models

The overall design of the learning system is organized around a process of task

decomposition and recombination. Its desired outcomes are: an improvement in classification

accuracy through the use of multiple, customized models,and reduced complexity (both

computational, in terms of convergence time, and structural, in terms of network complexity).

This section addresses the definition and utilization of “good” subdivisions of a learning problem

and the recognition of “bad” ones.

1.4.1 Applications of Multi-strategy Learning in Probabilistic Networks

One criterion for the merit of a candidate partition is thequality of subproblemsit produces.

Because my system is designed for multi-strategy learning [Mi93] using different types of

temporal probabilistic networks [HGL+98, HR98b], a logical definition of quality is the expected

12

performance ofany applicable network. In terms of model selection, I am interested in the

expected performance of the network adjudgedbest for a particular learning subproblem

definition. When metrics are properly calibrated and normalized, this allows the same evaluation

function used in model selection to drive the search for an effective partition. This novel

approach towards characterization of learning techniques in a multi-strategy system provides a

tighter coupling of unsupervised learning and model selection. The focus of multi-strategy

learning in this dissertation is to assemble a database of learning techniques. These should ideally

be: flexible enough to express many of the memory forms that may occur in time series data;

sufficiently rigorous (andhomogeneous) for a coherent choice can be made between competing

techniques; and possesses sufficiently few trainable parameters to make learning tractable.

1.4.2 Hybrid, Mixture, and Ensemble Models

Decomposable models are known by various terms in the machine learning community,

including hybrid [WCB86, DF88, TSN90],mixture [RCK89, JJ94], andensemble[Jo97a]

models. “Hybrid” is usually a colloquial synonym for multi-strategy, butmixture modelsand

ensemble learninghave more formal definitions. Ensemble learning is defined as a parameter

estimation problem that can be factored into subgroups of parameters, it is a staple of the

literature on variational methods [Jo97a]. Mixture models are the type of integrative learning

models that are investigated in depth in this dissertation. Chapter 4 is devoted to the discussion of

how to adapt hierarchical mixtures to composite learning.

1.4.3 Data Fusion in Multi-strategy Models

Data fusion is one liability of having multiple sensors, subordinate models, or other sources

of data in an intelligent system. In this research, data fusion arises naturally as a requirement due

to problem decomposition. From the outset, one objective of problem decomposition has been to

find a partitioning of the time series into homogeneous subsets. For a multiattribute time series, a

homogeneoussubset is a subset of attributes that, taken together, express one temporal pattern. A

common example is a heterogeneous time series that comprises attributes that describe one

temporal pattern (for instance, a moving average) and others that describe an additive noise

model (e.g., Gaussian noise). Many approaches to time series analysis simply make the

assumption that these homogeneous components exist and attempt to extract them [CT91, Ch96].

The goal of attribute partitioning is to find such partitions, on the principle that “piecewise”

13

homogeneous time series are easier to learn when each “piece” is mapped to the most appropriate

model. The problem of fusing (or recombining) these partial models is a primary motivation for

my study of data fusion. A collateral goal of attribute partitioning is to keep the overhead cost of

data fusion (i.e., recombining partial models) low. The experiments reported in this dissertation

demonstrate cases where partitions are indeed easier to learn and recombine.

Thus, the desired definition ofheterogeneousis containing more than one data type, butdata

type is restricted in this research to mean “temporal pattern to be recognized” (comprising the

memory form and other probabilistic characteristics that are enumerated and documented in

Chapter 3 and Appendix C). Thus the definition of heterogeneity abstracts over issues of data

source, preprocessing(normalization and organization),scale(temporal and spatial granularity),

and application (inferential tasks). The desired definition of “decomposable” restricts

heterogeneity to a particulardecomposition mechanism(i.e., for representation and construction

of subtasks, through grouping of input attributes and formation of intermediate concepts),

assortment ofavailable models, and model selection mechanism. These are qualities of the

learningsystem, not the data set.

This research focuses on decomposable learning problems defined over heterogeneous time

series. It is nevertheless important to be aware of time series that are heterogeneous, but not

decomposable by the available tools. Such problemsshouldproperly be broken down into more

self-consistent components for the sake of tractability and clarity; but due to lack of available

models, incompleteness of the decomposition mechanism, or inaccuracy in the model selection

mechanism, cannot be broken downby the particular learning system. Such problems are salient

because the topic of this dissertation is not limited to the specific time series models and mixtures

presented here. Specifically, I attempt to address the scalability of the system and its capability to

support additional or alternative learning architectures. This requires consideration of the

conditions under which a heterogeneous time series can be decomposed (i.e., what qualities the

learning system must be endowed with, for thelearning problemto be decomposable).

In time series analysis, the problem of combining multiple models is often driven by the

sources of datathat are being modeled. The purpose of hierarchical organization in the learning

system documented here is to allow identification, from training data, of the best probabilistic

match between patterns detected in the data and a prototype of some known stochastic process.

This is the purpose of metric-based model selection, which – at the level of granularity applied –

14

is usually guided by prior knowledge of the generating processes (cf. [BD87, BJR94, Ch96,

Do96]). Chapter 2 describes a knowledge-free approach for cases where such information is not

available, yet the learning problem is still decomposable.

1.5 Temporal Probabilistic Networks

This section concludes the overview of the system for integrated, multi-strategy learning that

is presented in this dissertation, with a survey of probabilistic network types used and compared.

1.5.1 Artificial Neural Networks

As Section 1.3 and Chapter 3 explain, theARIMA family of processes is of particular interest

to many current systems for time series learning. I study three variants ofARIMA-type models

that are represented as temporal artificial neural networks: simple recurrent networks (AR) [Jo87,

El90, PL98], time-delay neural networks or TDNNs (MA) [LWH87], and Gamma networks

(ARMA) [DP92]. Algorithms for training these networks include delta rule learning

(backpropagation of error) and temporal variants [RM86, WZ89];Expectation-Maximization

(EM) [DLR77, BM94], and Markov chain Monte Carlo(MCMC) methods [KGV83, Ne93,

Ne96]. Finally, Chapter 4 documents how generalized linear models may be adapted to

multilayer perceptrons in ANN-based hierarchical mixture models designed to boost learning

performance.

1.5.2 Bayesian Networks and Other Graphical Decision Models

Bayesian networksare directed graph models of probability that can be adapted to time series

learning [Ra90, HB95]. The types of Bayesian networks and probabilistic state transition models

studied in this dissertation are temporal Naïve Bayesian networks (built using Naïve Bayes

[KLD96]) and hidden Markov models [Ra90], built using parameter estimation algorithms –

namely, EM [DLR77, BM94] andmaximum likelihood estimation(MLE) by delta rule [BM94,

Ha94]. Section 3.3 and Appendices B.1 and C.1 document these networks and the metrics used

to select them.

1.5.3 Temporal Probabilistic Networks: Learning and Pattern Representation

Finally, the issue remains of how temporal patterns are represented in probabilistic networks.

This is also the basis of metric design for model selection, at least for learning architectures. This

question is answered by using the mathematical characterization of memory forms (calledkernel

15

functions in temporal ANN learning) in the definition of metrics. Sections 3.3 and 3.4 and

Appendices B.1 and C.1 discuss this characterization. The representation of temporal patterns is

also empirically important to mixture models, metric normalization and system evaluation. This

is addressed in Chapters 5 and 6.

16

2. Attribute-Driven Problem Decomposition for Composite Learning

Selected
Attribute Subset

Multiattribute
Time Series

Data Set

Heterogeneous Time Series
(Multiple Sources)

Attribute
Partition

Model Training and Data Fusion

Attribute-Based
Decomposition:

Partitioning

Model
Specification

Model
Specifications

Problem Definition
(with Intermediate

Concepts)

Attribute-Based
Reduction:

Subset Selection

Unsupervised

Clustering Clustering

Model Selection:
Multi-Concept

Model Selection:
Single-Concept

Supervised
Unsupervised

Supervised

Figure 2. Systems for Attribute-Driven Unsupervised Learning and Model Selection

Many techniques have been studied for decomposing learning tasks, to obtain more tractable

subproblems and to apply multiple models for reduced variance. This chapter examinesattribute-

basedapproaches for problem reformulation, which start with restriction of the set of input

attributes on which the supervised learning algorithms will focus. First, I present a new approach

to problem decomposition that is based on finding a goodpartitioning of input attributes.

Kohavi’s research on attribute subset selection, though directed toward a different goal for

problem reformulation, is highly relevant; I explain the differences between these approaches and

how subset selection may be adapted to task decomposition. Second, I compare top-down,

bottom-up, and hybrid approaches for attribute partitioning, and consider the role of partitioning

in feature extraction from heterogeneous time series. Third, I discuss how grouping of input

attributes leads naturally to the problem of formingintermediate conceptsin problem

decomposition, and how this defines different subproblems for which appropriate models must be

selected. Fourth, I survey the relationship between the unsupervised learning methods of this

chapter (attribute-driven decomposition and conceptual clustering) and the model selection and

supervised learning methods of the next. Fifth, I consider the role of attribute-driven problem

decomposition in an integrated learning system with model selection and data fusion.

17

2.1 Overview of Attribute-Driven Decomposition

Figure 2 depicts two alternative systems for attribute-driven reformulation of learning tasks

[Be90, Ki92, Do96]. The left-hand side, shown with dotted lines, is based on the traditional

method of attributesubset selection[Ki92, KR92, Ko95, KJ97]. The right-hand side, shown with

solid lines, is based on attributepartitioning, which I have adapted in this dissertation to

decomposition of time series learning tasks. Given a specification for reformulated (reduced or

partitioned) input, new intermediate concepts can be formed by unsupervised learning (e.g.,

conceptual clustering); the newly defined problem or problems can then be mapped to one or

more appropriate hypothesis languages (model specifications). The new models are selected for a

reduced problem or for multiple subproblems obtained by partitioning of attributes; in the latter

case, a data fusion step occurs after individual training of each model.

2.1.1 Subset Selection and Partitioning

Attribute subset selectionis the task of focusing a learning algorithm's attention on some

subset of the given input attributes, while ignoring the rest [KR92, KJ97]. Its purpose is to

discard those attributes that are irrelevant to the learning target, which is the desired concept class

in the case of supervised concept learning. I adapt subset selection to the systematic

decomposition of learning problems over heterogeneous time series. Instead of focusing a single

algorithm on a single subset, the set of all input attributes is partitioned, and a specialized

algorithm is focused oneach subset. This research uses subset partitioning todecomposea

learning task into parts that are individually useful, rather than toreduceattributes to a single

useful group.

Kohavi’s work on attribute subset selection is highly relevant to this approach [KJ97]. The

important difference is that subset selection is designed for a single-model learning system; it

considers relevance with respect to this model and tests attributes based upon aglobal criterion:

the overall target and all other candidate attributes. Partitioning, by contrast, is designed for

multiple-model learning. Relevance is a property of a subset and an intermediate target, and

candidate attributes are tested based upon thislocal criterion.

Each alternative methodology has its pros and cons, and the difference in their respective

purposes makes them largelyincomparable. Partitioning methods are intuitively more suitable

for decomposable learning problems, and we can devise a simple experiment to demonstrate this.

Suppose a learning problemP, defined over a heterogeneous time series, can be decomposed into

18

two subtasks,P1 andP2, and a model fusion task,PF, and we are able to train modelsM1, M2 and

MF to some desired level of prediction accuracy. LetS be the subset of original attributes ofP

that are selected by a subset selection algorithm. Consider the space of models based onS that

belong to a given set of available model types with trainable parameters and hyperparameters,

and whose network complexity and convergence time do not exceed the totals forM1, M2 andMF.

(I formalize the notion of “available model” by defining acompositein Chapter 3.) Suppose

further that,with high probability, a non-modular model does not belong to this space; that is,

suppose that it is improbable that a non-modular model from our “toolbox” can do the job using

S, as efficiently as the modular model.If subset selection is used only to chooseS for a single

non-modular model (as it often is), then we can conclude that it is less suitable than partitioning

for problemP. In Chapter 5, I give concrete examples of real and synthetic data sets where this

scenario holds, including cases whereS is the entire set of input attributes (i.e., none are

irrelevant), yet there exists a useful partitioning.

Note, however, thatS can still be used in a modular learning model (and can even be

repartitioned first). Thus, knowing that the problem is decomposable does not conclude anything

about the aptness of subset selection in general. It is still a potentially useful (and sometimes

indispensable) preprocessing step for partitioning, especially considering that under the literal

definition, partitioningneverdiscards attributes.

2.1.2 Intermediate Concepts and Attribute-Driven Decomposition

In both attribute subset selection and partitioning, attributes are grouped into subsets that are

relevant to a particular task: the overall learning task or a subtask. Each subtask for a partitioned

attribute set has its own inputs (the attribute subset) and its ownintermediate concept. This

intermediate concept can be discovered using unsupervised learning algorithms, such ask-means

clustering. Other methods, such as competitive clustering or vector quantization (using radial

basis functions [Lo95, Ha94, Ha95], neural trees [LFL93], and similar models [DH73, RH98]),

principal components analysis [Wa85, Ha94, Ha95], Karhunen-Loève transforms [Wa85, Ha95],

or factor analysis [Wa85], can also be used.

Attribute partitioning is used to control the formation of intermediate concepts in this system.

Given a restricted view of a learning problem through a subset of its inputs, the identifiable target

concepts may be different from the overall one. In concept learning, for example, there are

typically fewer resolvable classes. A natural way to deal with this simplification of the learning

19

problem is to decrease the number of target classes for the learning subproblem. Specifically,

taking the original concept classes as a baseline and grouping them into equivalence classes

results in a simplification of the problem. Let us refer to the learning subtasks obtained in this

fashion as afactorization [HR98a] of the overall problem (so named because they exploit

factorial structure in the original classification learning problem, and because submodel

complexity is a polynomial factor of the overall model complexity). Attribute subset selection

yields a single, reformulated learning problem (whose intermediate concept is neither necessarily

different from the original concept, nor intended to differ). By contrast, attribute partitioning

yields multiple learningsubproblems(whose intermediate concepts may or may not differ, but are

simpler by design when they do differ).

The goal of this approach is to find a natural and principled way to specifyhow intermediate

concepts should be simpler than the overall concept. In Chapter 3, I present two mixture models,

the Hierarchical Mixture of Experts (HME) of Jordanet al [JJB91, JJNH91, JJ94], and the

Specialist-Moderator (SM) network of Ray and Hsu [RH98, HR98a]. I then explain why this

design choice is a critically important consideration in how a hierarchical learning model is built,

and how it affects the performance of multi-strategy approaches to learning from heterogeneous

time series. In Chapter 4, I discuss how HME and SM networks perform data fusion and how this

process is affected by attribute partitioning. Finally, in Chapters 5 and 6, I closely examine the

effects that attribute partitioning has on learning performance, including its indirect effects

through intermediate concept formation.

2.1.3 Role of Attribute Partitioning in Model Selection

Model selection, the process of choosing a hypothesis class that has the appropriate

complexity for the given training data [GBD92, Sc97], is a consequent of attribute-driven

problem decomposition. It is also one of the original directives for performing decomposition

(i.e., to apply the appropriate learning algorithm to each homogeneous subtask). Attribute

partitioning is a determinant of subtasks, because it specifies new (restricted) views of the input

and new target outputs for each model. Thus, it also determines, indirectly, what models are

called for.

There is a two-way interaction between the partitioning and model selection systems.

Feedback from model selection is used in partition evaluation; hence, the system is awrapper,

defined by Kohavi [Ko95, KJ97] as an integrated system forparameter adjustmentin supervised

20

inductive learning that uses feedback from the induction algorithm. This feedback can be defined

in terms of a generic evaluation function over hypotheses generated by the induction algorithm.

Kohavi considers parameter tuning over a number of learning architectures, especially decision

trees, where attribute subsets, splitting criterion, termination condition are examples of

parameters [Ko95]. The primary parameter in this wrapper system is attribute partitioning; a

second, a high-level model descriptor (the architecture and learning method). The feedback

mechanism is similar to that applied by Kohavi [Ko95], with the additional property that multiple

model types are under consideration (each generating its own hypotheses). Furthermore,

predictiverather thandescriptivestatistics are used to estimate expected model performance: that

is, rather than measuring the actual prediction accuracy for every combination of models, I have

developed evaluation functions for the individual model types and for the overall mixture.

Chapter 3 further explains this design.

Model selection is in turn controlled by the attribute partitioning mechanism. This control

mechanism is simply the problem definition produced by unsupervised learning algorithms. It is

directly useful as an input for performance estimation, which in turn is used to evaluate attribute

partitions (cf. [Ko95, KJ97]). This static evaluation measure can be applied to simply accept or

reject single partitions. A more sophisticated usage that I discuss in Chapter 3 is to apply the

evaluation measure as an inductive bias in a state space search algorithm. This search considers

entire families of attribute partitions simultaneously [Ko95, KJ97], a form of inductive bias (cf.

[Mi80, Mi82]).

2.2 Decomposition of Learning Tasks

Having presented the basic justification and design rationale for attribute partitioning, I now

examine in some greater depth the way in which it can be used to decompose learning tasks

defined onheterogeneousdata sets, especially time series. I first consider the relation between

attribute partitioning and subset selection, focusing on the common assumptions and limitations

of both methods. I then consider alternative attribute-driven methods for decomposition of

supervised inductive learning tasks, such as constructive induction. The purpose of this

discussion is not only to provide further justification for the partitioning approach, but also to

define its scope within the province ofchange-of-representationsystems [Be90, Do96, Io96].

Finally, I assess the pertinence of attribute partitioning to heterogeneous time series, documenting

it with a simple theoretical example that will be further realized in Chapter 5.

21

2.2.1 Decomposition by Attribute Partitioning versus Subset Selection

Practical machine learning algorithms, such as decision surface inducers [Qu85, BFOS84]

and instance-based algorithms [AKA91], degrade in prediction accuracy when many input

attributes are irrelevant to the desired output [KJ97]. Some algorithms such as Naïve-Bayes and

multilayer perceptrons (simple feedforward ANNs) are less sensitive to irrelevant attributes, so

that their prediction accuracy degrades more slowly in proportion to irrelevant attributes [DH73,

BM94]. This tolerance, however, comes with a tradeoff: Naive-Bayes and feedforward ANNs

with gradient learning tend to bemore sensitive to the introduction of relevant butcorrelated

attributes [JKP94, KJ97].

The problem ofattribute subset selectionis that of finding a subset of the original input

attributes (features) of a data set, such that an induction algorithm, applied to only the part of the

data set with these attributes, generates a classifier with the highest possible accuracy [KJ97].

Note that attribute subset selection chooses a set of attributes from existing ones in the concept

language, and does not synthesize new ones; there is no feature extraction or construction cf.

[Ki86, RS90, Gu91, RR93, Do96].

The problem of attributepartitioning is that of finding a set of nonoverlapping subsets of the

original input attributes whose union is the original set. Note that this original set may contain

irrelevant attributes; thus, it may be beneficial to apply subset selection as apreprocessingstep.

As for subset selection, the objective of partitioning is to generate a classifier with higher training

accuracy; but the purpose of the two approaches differs in a key aspect of modelorganization.

Partitioning assumes that multiple models, possibly of different types, will be available for

supervised learning. It therefore has the subsidiary goals of finding anefficientdecomposition,

with components that can bemapped to appropriate modelsrelatively easily. Efficiency means

lower model complexity required to meet a criterion for prediction accuracy; this overall

complexity can often be reduced through task decomposition. Conversely, the achievable

prediction accuracy may be higher given modular and non-modular models of comparable

complexity. [HR98a] documents an attribute-driven algorithm for constructing mixture models in

time series learning, the latter case is demonstrated. Efficiency typically entails decomposing the

problem into well-balanced components (distributing the learning load evenly). Mapping

subproblems to the appropriate models has significant consequences for learning performance

(both prediction accuracy and convergence rate), as I discuss in Chapter 3. An inductive bias can

22

be imposed on partition search (cf. [Be90, Mi80]) in order to take the available models (learning

architectures and methods) into account.

Both subset selection and partitioning produce no complex or compound attributes; in

Michalski’s terminology [Mi83], both can be said to perform pureselective induction, taken by

themselves. The intermediate concept formation step that follows, however, has elements of

constructive induction[Mi83]. Subset selection and partitioning address collateral but

different problems. In this dissertation, partitioning is specifically applied todefinition of new

subproblemsin time series learning. References toattribute-driven reformulationare intended to

include subset selection and partitioning, whileattribute-driven decompositionrefers to

partitioning and other methods thatdivide the attributes rather than choose among them.

As Kohavi and John note [KJ97], subset selection is a practical rather than a theoretical

concern. This is true for attribute partitioning as well. While the optimal Bayesian classifier for a

data set need never be restricted to a subset of attributes, two practical considerations remain.

First, the true target distribution is not known in advance [Ne96]; second, it is intractable to fit or

even to approximate [KJ97]. Modeling this unknown target distribution is an aspect of the classic

bias-variance tradeoff [GBD92], which pits model generality (bias reduction, or “coding more

parameters”) against model accuracy (variance reduction, or “refining parameters”). Intractability

of finding an optimal model, or hypothesis, is a pervasive phenomenon in current inductive

learning architectures such as Bayesian networks [Co90], ANNs [BR92], and decision surface

inducers [HR76]. An important ramification of these two practical considerations is that an

“optimal” attribute subset or partitioning should be defined with respect to thewhole learning

technique, in terms of its change of representation, inductive bias, and hypothesis language. This

includes both the learning algorithm (as Kohavi and John specify [KJ97]) and the hypothesis

language, orlearning architecture(i.e., the model parameters and hyperparameters [Ne96]).

2.2.1.1 State Space Formulation

Figure 3 contains example state space diagrams for attribute subset selection (subset

inclusion) and partitioning. Each state space is a partially ordered set (poset) with an ordering

relation≤ that is transitive and asymmetric. The ordering relation corresponds to operators that

navigate the search space (i.e., move up or down in the poset, between connected vertices).

23

0,0,0,0

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

1,0,1,0 0,1,1,0 1,0,0,1 0,1,0,11,1,0,0 0,0,1,1

1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1

1,1,1,1

0,0,0,0

0,1,2,3

0,0,1,0 0,0,1,1 0,1,0,0 0,1,0,10,0,0,1 0,1,1,0 0,1,1,1

0,0,1,2 0,1,2,1 0,1,2,0 0,1,1,20,1,0,2 0,1,2,2

Subset Inclusion State Space
Poset Relation: Set Inclusion
A ≤ B = “B is a subset of A”

“Up” operator: DELETE
“Down” operator: ADD

Set Partition State Space
Poset Relation: Set Partitioning
A ≤ B = “A is a subpartitioning

(refinement) of B”

“Up” operator: MERGE
“Down” operator: SPLIT

Figure 3. The state space diagrams for subset selection and partitioning

The ordering relation for subset selection is set inclusion, the converse of set containment; it

is usually denoted⊇. The set is ordered in this fashion to conform to the “top down” convention

for state space search (i.e., the vertex 0,0,0,0, denoting the empty set, is the root). Note that this

usage of “top down” refers to thesearch, not the process of constructing an attribute set, which is

instead best described as “bottom up” (because we start with 0 attributes and add more). Forn

attributes, there aren bits in each state of the subset inclusion state space, each an indicator of

whether an attribute is present (1) or absent (0) [KJ97]. The relation⊇ corresponds to operators

thatadd or deletesingle attributes to or from a candidate subset; these are analogous to stepwise

linear regression operators (forward selection and backward elimination) in statistics [Ri88,

KJ97]. The size of the state space forn attributes isO(2n), so it is impractical to search the space

exhaustively, even for moderate values ofn.

The ordering relation for subset partitioning is set partitioning; for example,A = {{1}{2}{3,

4}} is a subpartitioning ofB = {{1, 2}{3, 4}}, so we can write A ≤ B. The partitions are coded

according to membership labels: for example, 0,1,1,2 denotes the partition {{1}{2, 3}{4}}.

24

Thus, partitionA in the above example would be coded 0,1,2,2; partitionB, 0,0,1,1. The root

denotes {{1, 2, 3, 4}} (i.e., search begins with a default state that denotes one monolithic class,

corresponding to anon-modular model) and the bottom element denotes {{1}{2}{3}{4}}

(corresponding to acompletely decomposablemodel). Forn attributes, there aren labels in each

state. The relation≤ corresponds to operators thatsplit a single subset ormergea pair of subsets

of a candidate partition. The size of the state space forn attributes isBn, thenth Bell number,

defined as follows4:

ÿ
�

ÿ
�

�

−+−−
=

≠=<
=

=�
=

otherwiseknkSknS

knif

nkorknif

knS

knSB
n

k
n

),1()1,1(

1

0,00

),(

),(
0

Thus, it is impractical to search the space exhaustively, even for moderate values ofn. The

function Bn is ω(2n) and o(n!), i.e., its asymptotic growth is strictlyfaster than that of2n and

strictly slower than that ofn!. It thus results in a highly intractable evaluation problem if all

partitions are considered. For practical illustration, I implemented a simple dynamic

programming algorithm to generate partitions according to the recurrence above [CLR90].

Experiments using allB9 = 21147 andB10 = 115975 partitions of data sets with 9 and 10 attributes

respectively (6 of which belonged to a 1-of-C coding of a single measurement) were performed

on a 300-MHz Intel Pentium II workstation running Windows NT 4.0. The data sets contained

367 discrete exemplars each. Computing the mutual information between each subset of each

partition and the overall (5-valued, 1-of-C-coded) target concept took approximately 5 minutes of

wall clock time for the 9-attribute version and approximately 2.5 hours for the 10-attribute

version. Without customized paging, memory consumption for the 10-attribute experiment

approached the amount of primary memory for the workstation (256 megabytes). Thus, even an

11-attribute partition would be prohibitive to optimize by brute force (i.e., without search).

Chapter 5 and Appendix A document this performance issue.

2.2.1.2 Partition Search

Because naïve enumeration of attribute partitions by is highly intractable, a logical next step

is to optimize them by state space search. This entails an evaluation function over states in the

4 S is a recurrence known as the Stirling Triangle of the Second Kind. It counts the number of partitions of
ann-set intok classes [Bo90].

25

partition state space, depicted in Figure 3.Informed (heuristic-based) search algorithms that

apply to this problem formulation are: hill-climbing (also called greedy search or gradient ascent),

best-first, beam search, and A* [BF81, Wi93, RN95]. The generic template for these informed

search algorithms is as follows:

Search algorithm template

1. Put the initial state (root vertex) on the OPEN list;

CLOSED list← ∅, BEST← initial state.

2. while the BEST vertex has changed within the lastn iterationsdo

3. Letv = arg maxw ∈ CANDIDATES f(w)

(get the state from CANDIDATES with maximal f(w)).

4. Removev from OPEN, addv to CLOSED.

5. If f(v) -ε > f(BEST), then BEST← v.

6. Expandv by applying alldownwardoperators tov, yielding a list ofv’s children.

7. For each child not in the CLOSED or OPEN list, evaluate and add to the OPEN list.

8. Update CANDIDATES.

9. Return BEST.

The specific algorithms are differentiated by the definitions of f (step 3) and of

CANDIDATES (step 7):

Algorithm f(w) CANDIDATES

Hill climbing h(w) the list of current children ofv

Best-first h(w) the entire OPEN list

Beam search h(w) first k elements of the OPEN list sorted in
decreasing order off

A* h(w) + g(w) the entire OPEN list

where h(w) is the heuristic evaluation function (the higher, the better) and g(w) is the

cumulative root-to-vertex fitness (the actual total).

Chapter 5 documents the results for partition search using each of these algorithms.

26

2.2.2 Selective Versus Constructive Induction for Problem Decomposition

This section presents a comparative survey of methods for decomposing a data set by

reformulating attributes. So far, this chapter has focused on selective induction methods rather

than constructive induction (thesynthesisof new attributes). I now present a brief justification

for this choice.

Constructive induction, the formation of complex or compound attributes, is a method for

transforming low-level attributes into useful ones [Mi83, RS90, RR93, Do96]. It divides

inductive learning into two phases:attribute synthesis(also known asfeature construction) and

problem redefinition(also known ascluster description) [Do96]. Attribute synthesis produces a

transformed input by composing attributes using operators (e.g., arithmetic composition). This

constrains the choice of suitable hypothesis languages for describing the target concept, which in

turn defines a new learning problem. Much of computational learning theory is devoted to the

question of how to choose one of these hypothesis languages [Ha89, KV91]. The division of

induction into attribute synthesis and problem redefinition is analogous to Figure 2. First, the

input specification is transformed− in this case, by applying operators to form new attributes

rather than selecting or partitioning them. The redefinition of the learning problem is

accomplished by forming new concepts, and selecting the appropriate hypothesis language or

languages. These steps are organized into a single abstract phase in the traditional constructive

induction framework [Mi83, Do96]. I pay explicit attention to the boundary between

intermediate concept formation and model selection, because this distinction is important to

decomposition of time series learning problems, and to the modular and hierarchical mixture

approaches I apply in this dissertation.

The objective of attribute synthesis in the constructive induction framework is to combat the

phenomena ofdispersion and blurring [RS90, RR93, Do96]. Dispersion is a property of

concepts, wherein exemplars belonging to each class are scattered throughout instance space,or

the projection thereof under a particular attribute subset[RS90]. Blurring is another property of

concepts, wherein attributes that do not appear individually useful turn out to be jointly useful

[RR93]. Another way to say this is thatrelevance is a joint property of attributes, not an

independent one[He91, Ko95, KJ97]. Blurring is a converse property of decomposability by

attributes (wherein attributes that are jointly useful can be separated without loss of coherence); it

is thus a primarilyinter-subset property from the point of view of problem decomposition.

Dispersion is a symptom of attribute subset “insufficiency”, meaning that more knowledge,

27

orderings, or additional attributes are required for coherence; it is thus primarily anintra-subset

property. The reason for concentrating on attribute partitioning instead of attribute synthesis in

this dissertation, therefore, is that partitioning is moredirectly consciousof the issues of problem

decomposition, redefinition, model selection, and data fusion (the right hand side of Figure 2)

toward which my approach aims.

This concludes my brief justification of partitioning methods in constructive induction. Some

experimental comparisons are documented in Chapter 5.

2.2.3 Role of Attribute Extraction in Time Series Learning

This research focuses on multiattribute time series, especially when they are decomposable

by attribute partitioning. Thus, the data sets that I consider are restricted to multiattribute time

series, where each attribute represents a single channel of information through time (also known

as multichannel time series). Attribute partitioning as applied to multichannel time series

achieves problem redefinition by grouping attributes together, to produce subsets that we can

think of as “large attributes”. This is especially apropos for multichannel time series because

large attributes (the inputs to learning subproblems) occur naturally based upon the multiple

sources of data, such as sensors. In Chapters 4 and 5, I document several real-world and synthetic

time series that admit this type of decomposition.

The next section discusses how attribute partitioning may be used to drive problem

redefinition, the second phase of constructive induction.

2.3 Formation of Intermediate Concepts

2.3.1 Role of Attribute Grouping in Intermediate Concept Formation

Attribute partitioning produces a reformulation of the input to supervised concept learning.

We can think of this reformulation as problemdecompositionfrom the point of view of

multiattribute learning and problemspecializationfrom the point of view of multi-strategy

learning. The result, however, is the same: each subproblem has its input restricted to a subset of

the original attributes. This restriction is the driving force behind intermediate concept formation,

part of the second phase of constructive induction. Intermediate concept formation is also known

as cluster description [Do96] when the learning paradigm is single-concept constructive

induction. This dissertation deals with the formation of intermediate concepts in support of a

28

hierarchical, multi-strategy time series learning system. The principle is similar, however, as the

same unsupervised learning methods may be used to re-target the desired outputs whether there is

one set of inputs or several. Thus, attribute partitioning prepares the input; intermediate concept

formation, the output; and the result is a set of redefined learning subproblems for which model

selection and training are made easier.

2.3.2 Related Research on Intermediate Concept Formation

The same techniques used to form new concepts from unlabeled data (“deciding what to

learn”) can be brought to bear in attribute-driven problem decomposition, namely: conceptual

clustering and vector quantization, self-organizing systems, and other concept discovery

algorithms. Conceptual clustering methods are those that group exemplars into conceptually

simple classes, based upon attribute-centered criteria such as syntactic constraints, prior relational

knowledge, and prior taxonomic knowledge [SM86, Mi93]. Other clustering techniques include

competitive clustering or vector quantization methods. A well-known example isk-means

clustering, which finds prototypes (cluster centers) through an iterative refinement algorithm

[DH73, Ha94, Ha95]. Competitive clustering using radial-basis functions [Ha94, Ha95], neural

trees [LFL93], and other distance-based models has been studied in the artificial neural networks

and information processing literature [RN95]. Vector quantization, the problem of finding an

efficient intermediate representation (also known as acodebook) for learning (or model

estimation) problems in signal processing, has also been heavily researched and is the source of a

number of algorithms that apply to concept formation [DLR77, Le89]. Self-organization is a

process of unsupervised learning whereby significant patterns or features in the input data are

discovered using an adaptive model [RS88, Ko90, Ha95]. Architectures such as self-organizing

feature maps, which relate the topology of input data to its probability distribution, have been

discovered by Kohonen [Ko90] and investigated by Ritter and Schulten [RS88]. Finally, domain-

specific and architecture-specific algorithms for concept discovery from data, such as hidden-

variable induction algorithms for Bayesian networks [Pe88, LWYB90, CH92], also have the

capability to produce intermediate concepts.

2.3.3 Problem Definition for Learning Subtasks

The formation of intermediate concepts (learning targets, or desired output attributes)

completes a process of subproblem definition as depicted in Figure 2. This is, however, only the

beginning of the overall process of problem decomposition, which comprises problem

redefinition, model selection, and model reintegration (data fusion). What is accomplished by

29

partitioning attributes and defining a new target concept for each subset is the specification of a

self-contained learning subproblem for which aspecialized modelcan be selected. In

multiattribute learning, “self-contained” means that the attributes are sufficient for a well-defined

intermediate target (i.e., exhibit lowdispersion[RR93] with respect to that target) and distribute

the learning task evenly (i.e., take advantage of decomposability, resulting in controlledblurring

[RS90] across attributes). Chapters 3, 4, and 5 examine how the quality of this subproblem

definition affects the subsequent model selection, training and integration phases.

2.4 Model Selection with Attribute Subsets and Partitions

Model selectionis the process of finding a hypothesis class, or language, that has the

appropriate complexity for the given training data [GBD92, Sc97]. This section previews the role

of attribute subset selection and partitioning in model selection. It then shows how attribute

partitioning enhances the more interesting aspect of model selection where multiple (not

necessarily identical) models are called for.

2.4.1 Single versus Multiple Model Selection

The model selection problem can be described as optimization of model organization (e.g.,

determining the topology of a Bayesian network or artificial neural network, also known as

structuring [Pe86, CH92]), hyperparameters [Ne96], or parameters [GBD92, Sc97]. In all of

these cases, model selection can be directed towards a single problem definition or towards

multiple subnetworks, groups of hyperparameters, or groups of parameters. Multiple model

selection is more salient to problems decomposed using attribute partitioning, for the obvious

reason that partitions have multiple subsets and thereby induce multiple subproblems. It is also of

greater interest in the context of multi-strategy learning [HGL+98]. In this research, I am

specifically interested in the case where multiple models may be applied, but the learning

architectures and methods (mixture model and individual training algorithms) are not necessarily

identical. This is the case where thedata set is heterogeneous and thelearning problemis

decomposable.

2.4.2 Role of Problem Decomposition in Model Selection

Problem decomposition by attribute-based methods affects model selection in two ways:

directly, via input reformulation, and indirectly, via problem redefinition and reformulation of the

data. The direct relationship between partitioning and multiple model selection (and between

30

subset selection and single model selection) is predicated upon attribute-based model selection

decisions. That is, whatever decisions can be made about the hypothesis language based purely

upon syntactic specification of the input (including which attributes belong to a given subset) are

directly influenced by the partitioning used. The indirect effects can also be based upon syntactic

properties of the subproblems, but only if the reformulated output is taken into account. Note,

however, that this output (the intermediate concept) may be found bypurely syntacticclustering.

Typically, neither the problem redefinition nor the model selection process is based only

upon syntactic properties; the statistical content of the data thus plays an important role. This

dissertation, being primarily concerned with multiattribute time series data and the decomposition

thereof, thus focuses on the indirect case. For example, attributes can be grouped together such

that eachprojectionof the data (i.e., the “columns” corresponding to each subset) [Pe97] can be

learned using a particular temporal model such as anautoregressiveor moving averagemodel

[Mo94]. In this case, the prediction that a projection “can be learned” using a given model

(hypothesis language) is in the purview of model selection, and certainly requires information

about the reformulated data (namely, how tractable the new subproblem is given a candidate

model). This is the subject of Chapter 3.

2.4.3 Metrics and Attribute Evaluation

In this dissertation, I develop a quantitative method forcoarse-grainedmodel selection.

By coarse-grained, I mean determination of very high-level hyperparameters such as the network

architecture, mixture model, and training algorithm. These can be adjusted automatically, but are

traditionally considered beyond the “core” learning system. I argue in Chapter 3 that for

decomposable learning problems, indiscriminate use of “nonparametric” models such as

feedforward and recurrent artificial neural networks is too unmanageable. That is, leaving the

tasks of problem decomposition, model adaptation (i.e., changing model parameters and

hyperparameters to attain the appropriate internal representation for hypotheses), and model

integration (making coherent sense out of an hybrid [Mi93], mixture [JJ94, Bi95], ensemble

[Jo97a], orcompositemodel) is too much to expect! This is especially true in applications of

time series learning (where my performance element is classification for monitoring and

prediction), because decision surfaces are more sensitive to error when the target concept is a

future event of importance. The alternative I propose and investigate is to assume that there is a

“right tool for each job” in a decomposable learning problem, where “each job” is found by

31

attribute partitioning and the “right tool” is identified by coarse-grained, quantitative (ormetric-

based) model selection.

The interaction between this model selection system and the partitioning algorithm is that

evaluation metrics for models provide feedback for partitions. Figure 1, in Chapter 1, illustrates

this design. Partitioning and model selection operate concurrently, with the partitioning

algorithm producingcandidate partitions(either by naïve enumeration or by search). Model

selection evaluates learning architectures with respect toeach subsetof a partition (recall that an

objective of attribute-driven decomposition is to map subproblems to different learning

architectures). It also evaluates learning methods (mixture models and training algorithms)as a

total function of the partition. This second component of the evaluation metric can be fed back to

the partition search algorithm as a heuristic evaluation function. The partitioning algorithm, in

turn, uses this feedback to produce better candidate partitions.

2.5 Application to Composite Learning

2.5.1 Attribute-Driven Methods for Composite Learning

The raison d’êtreof model selection in concept learning is to produce a hypothesis language

specification for supervised learning. When this choice has been committed to the acceptable

partition or partitions, training can proceed independently with the specified model for each

partition. It is the object being specified that I refer to as acomposite: the complete problem

definition (an attribute partition, mixture model, learning algorithm, and selected architectures for

each subset− a temporal, probabilistic subnetwork in each case). Thus, the entire learning system

revolves around attribute partitioning, intermediate concept formation, and multiple model

selection, with each phase driving the subsequent ones and feedback from model selection to

partitioning. A final consideration, which I summarize in Section 2.5.3 and address in depth in

Chapter 4, is how multiple models are recombined to improve prediction accuracy.

2.5.2 Integration of Attribute-Driven Decomposition with Learning Components

To fully understand the interaction between attribute-driven decomposition and multi-strategy

learning with model selection, it is useful to briefly survey some existing research. The relevant

systems are integrative learning systems with attribute evaluation. These include thewrapperand

filter approaches, described by Kohavi [Ko95]. Theattribute filter approach, documented by

32

Kohavi and John [KJ97] and previously investigated by Almuallim and Dietterich [AD91], Kira

and Rendell [KR92], Cardie [Ca93], and Kononenko [Ko94], is a simple methodology for

attribute subset selection that evaluates attributes outside the context of any induction algorithm.

The effective assumption is that relevance is an entity independent of the hypothesis language− a

dubious assumption in most cases and highly susceptible to properties such as greediness in

decision surface inducers [KJ97]. While technically, knowledge of the hypothesis language can

be captured by the selection function, this is highly impractical as Kohavi and John document in

their survey of filtering techniques [KJ97]. John, Kohavi, and Pfleger have identified a number

of weaknesses in attribute filtering, and derived several pathological datasets to demonstrate these

weaknesses [JKP94]. I show in Chapters 5 and 6 that such pathologically bad cases constitute a

combinatorially significant proportion of datasets. This is demonstrable whether the data are

generated exhaustively, deterministically according to constraints, or stochastically according to

sampling constraints.

The wrapper approach to attribute subset selection, pioneered by Kohavi [Ko95], is an

alternative to attribute filtering that takes the induction algorithm into account. I adapt the

generalized wrapper developed by Kohavi and John [KJ97] to attribute partitioning in support of

integrated model selection. This approach is depicted in Figures 22 and 23, in Chapter 6.

The advantages of using wrappers for attribute partitioning, in addition to granting a facility

for taking a particular induction algorithm into account, are as follows:

1. When multiple models (hypothesis languages) are available, thecomponentsof a partition (its

subclasses) should be treated as separate parts of a decomposed learning task. Each part has

its own learning target and requires a hypothesis language well suited to expressing it. The

task of attribute-driven constructive induction, as described in Sections 2.2-2.3, is to find this

target; the task of model selection, described in Chapter 3, is to find an efficient

corresponding language. In this case, the hypothesis language is determined by two criteria:

the time series representation (learning architecture) for a particular subset and thelearning

methodfor an entire partition.

2. A partition should be evaluated on the basis ofcoherence(i.e., each subclass must be

cohesiveand have attributes relevant to the local or specialized learning target) andefficiency

(it should not involve too much computational effort to combine models for each subclass).

33

A typical method for implementing inductive bias in this integrated system is heuristic search

over the state space of partitions [BF81, RN95]. This technique generalizes over a number of

algorithms that incorporate quantitative feedback. It is similar to the approaches investigated by

Kohavi and John [KJ97], but the difference is that the evaluation function is computed over

partitions, not subsets.

2.5.3 Data Fusion and Attribute Partitioning

To complete the process of multi-strategy learning depicted on the right-hand side of Figure

2, a system must be able to reintegrate the trained components. I accomplish this by organizing a

hierarchical mixture model based upon each accepted attribute partition. This mixture model

containsspecialistsubnetworks that are trained using the subproblem definitions andmoderator

networks designed to integrate these subnetworks. Each specialist subnetwork takes as input the

“columns” of the training data specified by an attribute subset, and is trained using the

intermediate concept formed for those columns) and uses the model specification found by model

selection. Each specialist network belongs to a given type of probabilistic network such a simple

recurrent network or a time-delay neural network; this architecture is specified for each

subproblem. Finally, the moderator networks are selected based on the same metric-based

method (documented in Chapter 3). This process combines subnetworks in a bottom-up fashion

until there is a single moderator network. The tree-structured overall network can be trained

level-by-level (and supportsstacking[Wo92] as a statistical validation method). The way that

moderator targets are defined is a function of the mixture model. The two general categories of

mixture model that I consider arespecialist-moderator (SM) networks[RH98] andhierarchical

mixtures of experts (HME)[JJ94]. The hallmark of SM networks is bottom-up refinement of

intermediate concepts (and, conversely, top-down decomposition of learning tasks) [RH98,

HR98a]. The hallmark of HME is iterative specialization of subnetworks to distribute the

learning task evenly across moderators and among specialists. The choice of mixture models is

discussed in Chapter 3. The data fusion properties are the subject of Chapter 4 and are addressed

in greater depth there.

34

3. Model Selection and Composite Learning

Specialist-Moderator
Network

Hierarchical
Mixture of Experts

Gradient EM Metropolis Gradient EM Metropolis
Gamma
Memory ✓✓✓✓ −−−− ★★★★ ✓✓✓✓ ★★★★ ★★★★
Time Delay Neural
Network (TDNN) ✓✓✓✓ −−−− ★★★★ ✓✓✓✓ ★★★★ ★★★★
Simple Recurrent
Network (SRN) ✓✓✓✓ −−−− ★★★★ ✓✓✓✓ ★★★★ ★★★★
Hidden Markov
Model (HMM) ✓✓✓✓ ✓✓✓✓ −−−− ✓✓✓✓ ✓✓✓✓ −−−−
Temporal Naïve
Bayesian Network ★★★★ ★★★★ −−−− ★★★★ ★★★★ −−−−

Legend:✓= known combination;★ = current research;− = beyond scope of current research

Table 1. Learning architectures (rows) versus learning methods (columns)

The ability to decompose a learning task into simpler subproblems prefigures a need to map

these subproblems to the appropriate models. The general mapping problem, broadly termed

model selection, can be addressed at very minute to very coarse levels. This chapter examines

quantitative, metric-based approaches for model selection at a coarse level. First, I present and

formalize a new approach to multi-strategy supervised learning that is enabled by attribute-driven

problem decomposition. This approach is based upon a natural extension of theproblem

definition and technique selectionprocess [EVA98].5 Second, I present a rationale for using

quantitative metrics to accumulate evidence in favor of particular models. This leads to the

design presented here, a metric-based selection system fortime series learning architecturesand

general learning methods. Third, I present the specific time series learning architectures that

populate part of my collection of models, along with the metrics that correspond to each. Fourth,

I present the training algorithms and specific mixture models that also populate this collection,

along with the metrics that correspond to each. Fifth, I document a system I have developed for

normalizing metrics and a method for calibrating the normalization function from training

corpora.

3.1 Overview of Model Selection for Composite Learning

Table 1 depicts a database of learning techniques. Each row lists a temporal learning

architecture (a type of artificial neural network or Bayesian network); each column, a specific

35

learning method (a type of mixture model and learning algorithm). This section presents a new

metric-based algorithm for mapping each component of a decomposed time series learning

problem to an entry in this database. This algorithm selects the learning techniquemost strongly

indicated by the characteristics of each component. The objective of this approach is not only to

map subproblems tospecializedtechniques for supervised learning, but also to map the combined

learning problem to the most appropriatemixture modeland supervised training algorithm. This

process is enabled by the systematic decomposition of learning problems and the redefinition of

subproblems. My attribute-driven method for problem decomposition, given in Chapter 2,

comprises partitioning of input attributes and “cluster definition” (retargeting of intermediate

outputs to newly discovered concepts). We begin the next phase with the resulting subproblems.

3.1.1 Hybrid Learning Algorithms and Model Selection

By applying attribute-driven methods to partition a time series learning task and formulate

intermediate concepts (i.e., specialized targets) for each subtask, we have obtained aredefinition

of the overall supervised learning problem. This redefinition ismodular, in that training of the

individual components can occur concurrently and locally (even independently, if the mixture

model so specifies). Another benefit of this local computation is that it supports a hierarchy of

multiple models. This dissertation considers two ways in which a hierarchy of models can

capture different aspects of the learning task as defined by partitioning: through specialization of

redundant models (top-down), and through refinement of coarse-grained specialists (bottom-up).

Both methods are designed to reduce variance and to be based upon attribute partitioning. To

properly account for the interaction between automatic methods for problem decomposition and

automatic methods for model selection, a characterization ofmodel typesis needed. In order to

partially automate the kind of high-level decisions that practitioners of multi-strategy learning

make, this characterization must indicate thelevel of matchbetween a subproblem and each

specific type of learning model under consideration. This provides the capability to predict the

expected performance, given the candidate subproblem and model.

3.1.1.1 Rationale for Coarse-Grained Model Selection

Model selectionis the problem of choosing a hypothesis class that has the appropriate

complexity for the given training data [St77, Hj94, Sc97]. Quantitative, ormetric-based, methods

for model selection have previously been used to learn using highly flexible models with many

5 I will henceforth use the termmodel selectionto refer to both traditional model selection and the metric-
based methods for technique selection as presented here.

36

degrees of freedom [Sc97], but with no particular assumptions on the structure of decision

surfaces (e.g., that they are linear or quadratic) [GBD92]. Learning without this characterization

is known in the statistics literature asmodel-free estimationor nonparametric statistical

inference. A premise of this dissertation is that, for learning from heterogeneous time series,

indiscriminate use of such models is too unmanageable. This is especially true in diagnostic

monitoring applications such as crisis monitoring, because decision surfaces are more sensitive to

error when the target concept is a catastrophic event [HGL+98].

The purpose of using model selection indecomposablelearning problems is tofit a suitable

hypothesis language (model) to each subproblem. A subproblem is defined in terms of a subset

of the input and an intermediate concept, formed by unsupervised learning from that subset.

Selecting a model entails three tasks. The first isfinding partitionsthat are consistent enough to

admit at most one “suitable” model per subset. The second isbuilding a collection of modelsthat

is flexible enough so that some partition can have at least one model matched to each of its

subsets. The third is toderive a principled quantitative system for model evaluationso that

exactly one model can be correctly chosen per subset of the acceptable partition or partitions.

These tasks indicate that a model selection systemat the level of subproblem definition is

desirable, because this corresponds to the granularity of problem decomposition, the design

choices for the collection of models, and the evaluation function. This is a more comprehensive

optimization problem than traditional model selection typically adopts [GBD92, Hj94], but it is

also approached from a less precise perspective; hence the termcoarse-grained.

3.1.1.2 Model Selection versus Model Adaptation

For heterogeneous time series learning problems, indiscriminate use of nonparametric models

such as feedforward and recurrent artificial neural networks is often too unmanageable. As

[Ne96] points out, the models that are referred to asnonparametricin ANN research actually do

have well-defined parameters (trainable weights and biases) and hyperparameters (distribution

parameters for priors). A major difficulty and drawback of using ANNs in time series learning is

the lack of semantic clarity that results from having so many degrees of freedom. Not only is the

optimization problem proportionately more difficult, but it is often nontrivial (or entirely

infeasible) to map “internal” parameters to concrete uncertain variables from the problem [Pe95].

A theoretical result that is often abused in this context is that a neural network with sufficient

degrees of freedom can express any hypothesis [RM86]. This doesnot, however, mean that a

single, maximally flexible model should always be applied instead of multiple specialized ones.

37

The syndrome that I refer to as “indiscriminate use” is the typically mistaken assumption that,

even for decomposable learning problems, it is an effective use of computational power to apply

the single model. In effect, that single model is being required to achieve automatic problem

decomposition, relevance determination, localized model adaptation, and data fusion. The

alternative suggested by the “no-free-lunch” principle is to make these processesexplicit, and

attempt to provide some unifying control over them through a high-level algorithm.

The remainder of this section describes a novel type of coarse-grained, metric-based model

selection that selects from a known, fixed “repertoire” or “toolbox” of learning techniques. This

is implemented as a “lookup table” of architectures (rows) and learning methods (columns). Each

architecture and learning method has a characteristic that is positively (and uniquely, or almost

uniquely) correlated with its expected performance on a time series data set. For example, naïve

Bayes is most useful for temporal classification when there are many discriminatory observations

(or symptoms) all related to the hypothetical causes (or syndromes) that are being considered

[KSD96, He91]. Theabsolutestrength of this characteristic is measured by an indicator metric.

To determine itsrelativestrength, ordominance, this measure must be normalized and compared

against those for other characteristics. For example, the indicator metric for temporal naïve

Bayes is simply a score measuring the degree to which observed attributes are relevant to

discrimination of every pair of hypotheses. The highest-valued metric thus identifies the

dominant characteristic of a subset of the data. This assumes that the subset is sufficiently

homogeneous for a single characteristic to dominateand to be recognized.

The metric-based approach literally emphasizesselectionof models, whereas most existing

approaches are more parameter-intensive, and might better be described as modeladaptation.

This is an important distinction when attempting to learn from heterogeneous data. Model

adaptation then tends to suffer acutely from the complexity costs of having many degrees of

freedom, while problem decomposition with coarse-grained model selection can relieve some of

this overhead.

3.1.2 Composites: A Formal Model

This section definescomposites, which are attribute-based subproblem definitions, together

with the learning architecture and method for which this alternative representation shows the

strongest evidence.

38

Definition. A compositeis a set of tuples () ()()kkkkk SBASBA ,,,,,,,,,, 11111 γθγθ ÿ=L ,

where Ai and Bi are sets of input and output attributes,iθ and iγ are namesof network

parameters and hyperparameters cf. [Ne96] (i.e., the learning architecture), andSi is thenameof a

learning method (a training algorithm and a mixture model specification).

A composite is depicted in Figure 1 of Chapter 1, in the box labeled “learning techniques”.

Intuitively, a composite describes all of the model descriptors that can be chosen by the

overall learning system. This includes the trainable weights and biases; the specification for

network topology (e.g., number, size, and connectivity of hidden layers in temporal ANNs); the

initial conditions for learning (prior distributions of parameter values); and most important for

time series learning, the process model. The process model describes the type of temporal pattern

that is anticipated and the stochastic process assumed to have generated it. In terms of network

architecture, it specifies thememory type(the mathematical description of the pattern as a finite

function of time) [Mo94, MMR97].

A composite also specifies the network types for moderator networks (also known asgating

[JJ94], fusion [RH98], or combiner [ZMW93] networks) in the mixture model. Because the

problem is decomposed by attribute partitioning, a moderator network is always required

whenever there is more than one subset of attributes. I discuss this aspect of composites in

Section 3.4 and in Chapter 4. Finally, a composite specifies the training algorithm to be used for

an entire partition (i.e., each subproblem, as defined for each subset). Both the mixture model

and the training algorithm are selected based upon quantitative analysis of the entire partition, as I

explain in Section 3.4.

Property. In a learning system where task decomposition is driven by attribute partitioning,

the set union ofAi is the original set of attributesA (by definition of apartition) and each set of

output attributesBi is an intermediate concept corresponding toAi.

The reason why attribute subsets are included in a composite is that they specify the way that

a problem is partitioned with sufficient information to build the subnetworks for each subproblem

(i.e., to extract the input and produce the target outputs for every subnetwork). Thus, a composite

contains every specification needed to generate a hierarchical model (specialists and moderators)

39

given the training data. Composites are generated using the algorithm given in the following

section.

3.1.3 Synthesis of Composites

A general algorithm for composite time series learning follows.

Given:

1. A (multiattribute) time series data set

D = ((x(1), y(1)), …, (x(n), y(n))) with input attributes

A = (a1, …, aI) such thatx(i) = (x1
(i), …, xI

(i)) and output attributesB = (b1, …, bO) such that

y(i) = (y1
(i), …, yO

(i))

2. A constructive induction functionF (as described in Chapter 2) such thatF(A, B, D) = {(A’,

B’)}, where A’ is an attribute partition andB’ is a group of intermediate concepts for each

attribute subsets, found by problem redefinition (cluster description) usingA’.

Algorithm Select-Net(D, A, B, F)

repeat

Generate a candidate representation),,(),('' DBAFBA ∈ .

for each learning architectureττττ a

for each subsetAi’ of A’

Computearchitecturalmetricsxiττττ
a = mττττ

a(Ai’, Bi’) that evaluateττττ a

with respect to(Ai’, Bi’).

for each learning architectureττττ d

Computedistributionalmetricsxττττ
d = mττττ

d(A’, B’) that evaluateττττd

with respect to (A’,B’).

Normalize the metricsxττττ using a precalibrated functionGττττ − see Equation 1.

Select the most strongly prescribed architecture()γθ , and learning methodS for (A', B'), i.e.,

the table entry (row and column) with the highest metrics.

if the fitness (strength of prescription) of the selected model meets a predetermined threshold

then accept the proposed representation and learning technique()SBA ,,,, '' γθ

until the set of plausible representations is exhausted

Compile and train acomposite,L , from the selected complex attributes and techniques.

Compose the classifiers learned by each component ofL using data fusion.

40

() ()

() ()
()

() yyt

t

x
xf

xxfxG

ty

tx

x

t

de

e

d

0

1

1

0

parameterscale:

parametershape:

�

�

∞ −−

−−

=Γ

Γ
=

=

τ

ττ

τ

τ

τ

τ
λ

τ
τ

τττ

λλ

τλ
τ

Equation 1. Normalization formulas for metrics xττττ (ττττ = metric type)

The normalization formulas for metrics simply describe how to fit a multivariate gamma

distribution fττττ, based on acorpus of homogeneous data sets(cf. [HZ95]). Each data set is a

“training point” for the metric normalization function,Gττττ (i.e., the shape and scale parameters of

fττττ).

The above algorithm describes how to build a composite as aspecificationfor supervised,

multi-strategy learning on a decomposed time series, and how use it to carry out this learning.

The remainder of this chapter describes the mechanisms for populating the database of learning

techniques using all of the model components that are described in a composite, and how to

calibrate the metrics for selecting these components.

3.2 Quantitative Theory of Metric-Based Composite Learning

This section presents the metric-based component of a new multi-strategy model selection

system. Using approximate predictors of performance for each learning technique, I develop the

algorithm outlined in Section 3.1.3 for selecting the learning technique most stronglyindicated by

the data set characteristics.

3.2.1 Metric-Based Model Selection

The premise that nonparametric models such as feedforward and recurrent artificial neural

networks should not be applied without explicit organization is borne out by numerous studies in

the literature [GBD92]. The negative consequences of such ad-hoc usage, as reflected in network

complexity, convergence speed, and prediction quality, is especially evident in time series

41

learning [GW94, Ne96]. Prediction quality typically has a nonlinear utility in time series

prediction, with the shape of this function depending upon the inferential application [He91,

BDKL92, RN95, DL95]. In Chapters 4 and 5, I describe some synthetic and real-world problems

in time series learning that illustrate the overhead costs of single-strategy, adaptive models versus

multi-strategy model selection.

Quantitative methods for model selection allow the performance of inductive learning

techniques to guide the choice of a particular technique from among many different

configurations. The metrics used inestimatingperformance might be direct measurements or

indirect predictors. Direct measurements includedescriptive statistics, such as the mean and

variance for prediction accuracy and the confidence intervals for each mean (using a particular

technique). Greiner, for example, developed an estimation procedure for performance of an

induction algorithm that is used for tuning of various learning parameters [Gr92]. The

performance of two candidate induction algorithms is compared by holding a “race” between

them: specifically, prediction accuracy is computed until the confidence intervals for the mean (at

some specified confidence level) no longer overlap. Kohavi incorporated this procedure into

attribute subset selection [Ko95]. TheDELVE system, developed at the University of Toronto,

takes a more sophisticated approach toward tracking and analyzing the long-term (and case-

specific) competitive behavior of learning algorithms, also using descriptive statistics [RNH+96].

In some learning applications, time and computational resource limitations make it less

feasible to collect descriptive statistics than to compute metrics thatestimate expected

performance. In coarse-grained model selection, this method ofindirect predictionis efficient

when a learning technique is one of several combinations (as is the case for the database shown in

Table 1). The savings in computational work are combinatorially magnified when there are

subproblems for which a model must be selected. The interaction among these subproblems at

the level of the mixture model (i.e., at allmoderator networklevels, as defined in Section 3.4 and

Chapter 4) means that every combination of learning technique configurations among

subproblems must be tested. As Table 1 shows, there are up to 23 implemented configurations

that may be tested for asinglesubproblem. Even with equality constraints on the mixture model

and algorithm (the selected column), the number of combinations is an exponential function of

the number of subsets, with a relatively large base. Appendix A describes this growth in more

detail. There may also be insufficient computational resources to obtainconclusivedescriptive

statistics. In this case the predictive method may or may not help, depending on how

42

representative the training corpus is for metric normalization (see Section 3.5 and Chapter 5).

That is, metrics for indirect prediction may outperform “try and see” methods if the volume of

training data is relatively small compared to the size of the desired inference space (the volume of

test data),but the metrics have been calibrated with many more representative test beds. Finally,

feedback from the normalized metrics is useful as a heuristic evaluation function for attribute

partition search, as documented in Section 2.4.3 and Chapter 5.

3.2.2 Model Selection for Heterogeneous Time Series

This section first surveys three types oflinear processes [GW94, Mo94] for time series

learning. Next, it presents three corresponding artificial neural network models that are

specifically designed to represent each process type and the algorithms that are used to train these

models. Then it surveys additional types of temporal patterns that can be efficiently expressed by

temporal Bayesian network models and discusses how the same algorithms can sometimes be

adapted to train them. Finally, it examines the methodology of existing mixture models and

explains how the two used in my system were developed.

To model a time series as a stochastic process, one assumes that there is some mechanism

that generates a random variable at each point in time. The random variablesX(t) can be

univariate or multivariate (corresponding to single and multiple attributes orchannelsof input per

exemplar) and can take discrete or continuous values, and time can be either discrete or

continuous. For clarity of exposition, my experiments focus on discrete classification problems

with discrete time. The classification model isgeneralized linear regression[Ne96], also known

as a1-of-C coding[Sa98] orlocal coding[KJ97].

Following the parameter estimation literature [DH73], time series learning can be defined as

finding the parameters { }nθθ ,,1 ÿ=Θ that describe the stochastic mechanism, typically by

maximizing the likelihood that a set of realized orobservablevalues, () () (){ }ktxtxtx ,,, 21 ÿ , were

actually generated by that mechanism. This corresponds to the backward, or maximization, step

in the expectation-maximization (EM)algorithm [DH73]. Forecasting with time series is

accomplished by calculating the conditional density () () (){ }{ }()mtXtXtXP −−Θ ,,1,| ÿ , when the

stochastic mechanism and the parameters have been identified by the observable values{x(t)}.

The orderm of the stochastic mechanism can, in some cases, be infinite; in this case, one can only

approximate the conditional density.

43

Despite recent developments with nonlinear models, some of the most common stochastic

models used in time series learning are parametric linear models calledautoregressive (AR),

moving average (MA), andautoregressive moving average (ARMA)processes.

MA or moving average processes are the most straightforward to understand. First, let{Z(t)}

be some fixed zero-mean, unit-variance “white noise” or “purely random” process (i.e., one for

which () ()[] 0,1, jiji ttifftZtZCov == otherwise).X(t) is anMA(q) process, or “moving average

process of orderq”, if () ()�
=

−=
q

tZtX
0τ

τ τβ , where the τβ are constants. It follows that

()[] 0=tXE and ()[] �
=

=
q

tXVar
0τ

τβ . Moving average processes are often used to describe stochastic

mechanisms that have a finite, short-term, linear “memory” [Mo94, Ch96, MMR97, PL98]. The

input recurrentnetwork [RH98], a type ofexponential tracememory [Mo94, MMR97], is an

example of a model forMA(1).

ARor autoregressive processes are processes in which the values at timet depend linearly on

the values at previous times. With{Z(t)} as defined above,X(t) is an AR(p) process, or

“autoregressive process of orderp”, if () ()tZtX
p

=−�
=0υ

υ υα , where the υα are constants. In this

case, ()[] 0=tXE , but the calculation of ()[]tXVar depends upon the relationship among theυα ;

in general, if 1≥υα , thenX(t) will quickly diverge. AR processes can be expressed by certain

exponential trace memory forms (specifically, Jordan recurrent networks [Jo87, PL98]) or by

time-delayor tapped delay-line neural networks(TDNNs [LWH90, MMR97] or delay-space

embedding[Mo94]). They are equivalent to infinite-lengthMA processes [BD87, Ch96].

ARMAis a straightforward combination ofARandMA processes. With the above definitions,

anARMA(p, q)process is a stochastic processX(t) in which () ()τβυα
τ

τ
υ

υ −=− ��
==

tZtX
qp

00

, where

the { }τυ βα , are constants [Mo94, Ch96]. Because it can be shown thatAR andMA are of equal

expressive power, that is, because they can both represent the same linear stochastic processes

(possibly with infinitep or q) [BJR94], ARMA model selection and parameter fitting should be

done with specific criteria in mind. For example, it is typically appropriate to balance the roles of

44

theAR(p)andMA(q), and to limitp andq to small constant values for tractability (empirically, 4

or 5) [BJR94, Ch96, PL98]. TheGamma memory[DP92, PL98] is an example of anARMA (p,

q) model.

In heterogeneoustime series, the embedded temporal patterns belong to different categories

of statistical models, such asMA(1) and AR(1). Examples of such embedded processes are

presented in the discussion of the experimental test beds in Chapter 5 and the appendices. As

discussed in Section 2.2, a multiattribute time series learning problem can be decomposed into

homogeneous subtasks by synthesis of attributes or by partitioning. Decomposition of time series

by partitioning is applicable in multimodal sensor fusion (e.g., for medical, industrial, and

military monitoring), where each group of input attributes represents the bands of information

available to a sensor [SM93]. Analogously, in geospatial (map-referenced) data mining,

attributes may be grouped on the basis of sensor or measurement sites (i.e., how the locations of

observations are clustered). Complex attributes may besynthesizedexplicitly by constructive

induction, as in causal discovery of latent (hidden) variables [He96]; or implicitly by

preprocessing transforms [HR98a, RH98].

Artificial neural network architectures that correspond to ARMA, MA, and AR processes are

called, respectively,Gamma networks(whose individual units are known as Gammamemories)

[DP92, Mo94, MMR97, PL98],simple recurrent networks(SRNs) [Mo94, Ha95, MMR97,

PL98], andtime-delayor tapped delay-line neural networks(TDNNs) [LWH90, Ha94, Mo94,

MMR97, PL98]. Note that SRNs may representeithernonlinear AR (Jordan-type [Jo87, PL98])

or nonlinear MA(1) (input-recurrent [Mo94, MMR97, PL98, RH98]) processes. Minsky and

Papert [MP69] first discussed SRNs, but adaptations ofdelta rule learning6 such as

backpropagation through time(BPTT) were first developed by Rumelhartet al [RM86]. Specific

architectural types were developed by Elman [El90], Jordan [Mo94], and Principéet al [PL98].

Other algorithms that are used to train temporal ANNs include theExpectation-Maximization

(EM) algorithm [DLR77, BM94], a local optimization algorithm for probabilistic networks, and

theMetropolisalgorithm for simulated annealing [KGV83, Ne93]. Appendix B describes these

algorithms, and their implementation in my system, in greater detail.

6 A family of local, gradient-based optimization algorithms also referred to asbackpropagationof error.

45

Both EM and gradient learning can be used to learn the conditional probabilities associated

with parent sets in temporal Bayesian networks [Ne93] and with state transitions and output

distributions in hidden Markov models [Le90, BM94]. This approximate process is known as

parameter estimationin the statistical inference literature [GBD92, Ne96]. Appendix B also

describes the adaptation of EM and gradient learning to parameter estimation in temporal

Bayesian networks.

Our survey of the learning components with which to populate a database of concludes with a

brief discussion of mixture models and hierarchical structure. Sections 3.4 and 3.5 and Chapter 4

provide more technical detail regarding the architecture of hierarchical mixtures (especially

fusion networks) as used in this dissertation. Meanwhile, the following synopsis gives the design

rationale for the organization of columns shown in Table 1. A mixture model is needed to

reintegrate intermediate predictions from multiple subnetworks for each subproblem obtained by

systematic decomposition. This research considers two basic designs for mixture models:

bottom-up refinement to account for the differences in intermediate concepts achieved by input

attribute partitioning. This corresponds to a single-pass construction whose purpose is to

combine multiple “specialist” models (possibly of different types) with lower resolution

capability into a more powerful model with reduced localization error. The mixture model used

to implement this design is called aspecialist-moderator network[HR98a, RH98], and it is fully

documented in Chapter 4. The second category of mixture models used is the top-down “load-

distributing” mixture that divides the learning problem by weighting subtrees of the hierarchy so

as to force specialization of the individual subnetworks to different parts of the (possibly

multimodal) overall target distribution. This corresponds to a multi-pass training procedure

whose purpose is to find a “good split” of the mixture (“gating network”) weights and an even

distribution of the learning task among “expert” subnetworks. The mixture model used to

implement this design is a variant of theHierarchical Mixture of Experts(HME) of Jordanet al

[JJB91, JJNH91, JJ94], which assumes identical inputs and intermediate target concepts. I relax

this assumption for compatibility with the attribute partitioning and multi-strategy learning

approach. Chapter 4 discusses the ramifications of this design.

3.2.3 Selecting From a Collection of Learning Components

The remainder of this section describes a novel type of metric-based model selection that

selects from a known, fixed “repertoire” or “toolbox” of learning techniques. This is

46

implemented as a “lookup table” ofarchitectures(rows) andlearning methods(columns). In

object-oriented design terms, the learning architecture corresponds to the data structures and

instance variables of a class definition; the learning method (both the algorithms and mixing

procedure), to the methods of this class. Each architecture and learning method has a

characteristic that is positively (and uniquely, or almost uniquely) correlated with its expected

performance on a time series data set. For example, naïve Bayes is most useful for temporal

classification when there are many discriminatory observations (orsymptoms) all related to the

hypothetical causes (orsyndromes) that are being considered [He91]. The strength of this

characteristic is measured by anarchitecturalor distributional metric. Each is normalized and

compared against those for other (architectural or distributional) characteristics. For example, the

architectural metric for temporal naïve Bayes is simply a score measuring the degree to which

observed attributes arerelevant to discrimination of every pair of hypotheses. The “winning”

metrics thus identifies the dominant characteristics of asubsetof the data (if this subset is

sufficiently homogeneous to identify a single winner). These subsets are acquired by selecting

input attributes(i.e., channels of time series data) from the original exemplar definition (cf.

[KJ97]).

The metrics are calledprescriptive because each one provides evidence in favor of an

architecture or method. The design principle for prescriptive metrics is twofold. First, the goal is

to derive anormalized, quantitativemeasure for each modelcategoryof the degree to which a

training data set matches itscharacteristics. The characteristics of interest are thememory form

[Mo94], which captures the short-term memory capabilities of a time series model. The measure

should be quantitative and continuous in order to admit computation to the desired degree of

precision and comparison with any other measure. Furthermore, it must be normalized in order

for this comparison to be well defined. Because each metric prescribes a particular model type,

there are one-to-one correspondences between architectural metrics and rows of Table 1 and

between distributional metrics and columns of Table 1. Each metric should be high if and only if

the memory form (for architectural metrics) or a similar unique andlearnablecharacteristic (for

distributional metrics) is present. According to these design criteria, model can be selected by

simply accepting the model that is prescribed (or endorsed) by the highest-valued metric. This

means that theirrangesshould be finite and identical.

The next section describes a database of available learning architectures and methods

(mixture models and algorithms). Based on the formal characterization of these learning

47

techniques as time series models [GW94, Mo94, MMR97], indicator metrics can be developed

for the temporal structureandmixture distributionof a homogeneoustime series (i.e., one that

has identifiable dominant characteristics). The highest-valued (normalized)architecturalmetric

is used to select the learning architecture; the highest fordistribution is used to select the learning

method.

3.3 Learning Architectures for Time Series

For time series, we are interested in actuallyidentifyinga stochastic process from the training

data (i.e., a process that generates the observations). The performance element, time series

classification, will then apply amodelof this process to a continuation of the input (i.e., “test”

data) to generate predictions. The question I have addressed in this chapter is: “To what degree

does the training data (or a restriction of that data to a subset of attributes) probabilistically match

a prototype of someknown stochastic process?” This is the purpose of metric-based model

selection: to estimate the degree of match between a subset of the observed data and a known

prototype. Prototypes, in this framework, arememory forms[Mo94], and manifest as embedded

patternsgenerated by the stochastic processthat the memory form describes. For example, an

exponential trace memory form can express certain types of MA(1) processes. The kernel

function for this process is given in Section 3.2.2. The more precisely a time series can be

described in terms of exponential processes (wherein future values depend on exponential growth

or decay of previous values), the more strongly it will match this memory form. The stronger this

match, the better the expected performance of an MA(1) learning model, such as an input

recurrent (IR) network. Therefore, a metric that measures this degree of match on an arbitrary

time series is a useful predictor of IR network performance.

3.3.1 Architectural Components: Time Series Models

Learning Architecture Architectural Metric

Simple recurrent network (SRN) Exponential trace (AR) score

Time delay neural network (TDNN) Moving average (MA) score

Gamma network Autoregressive moving average (ARMA) score

Temporal naïve Bayesian network Relevance score

Hidden Markov model (HMM) Test set perplexity

Table 2. Learning architectures and their prescriptive metrics

48

Table 2 lists five learning architectures (the rows of a “lookup table”) and the indicator

metrics corresponding to their strengths. The principled rationale behind the design of these

metrics is that each is based on an attribute chosen tocorrelate positively(and, to the extent

feasible,uniquely) with the characteristic memory formof a time series. Amemory formas

defined by Mozer [Mo94] is the representation of some specific temporal pattern, such as a

limited-depth buffer, exponential trace, gamma memory [PL98], or state transition model.

SRNs, TDNNs, and gamma networks are all temporal varieties of artificial neural networks

(ANNs) [MMR97]. A temporal naïve Bayesian networkis a restricted type of Bayesian network

called aglobal knowledge map(as defined by Heckerman [He91]), which has two stipulations.

The first is that some random variables may be temporal (e.g., they may denote the durations or

rates of change of original variables). The second is that the topological structure of the Bayesian

network is learned by naïve Bayes. A hidden Markov model (HMM) is a stochastic state

transition diagram whose transitions are also annotated with probability distributions (over output

symbols) [Le89].

3.3.2 Applicable Methods

The methods that can be used with each learning architecture are indicated in Table 1 by the

symbols ✓✓✓✓ (denoting an existing implementation) and★★★★ (denoting a new implementation

developed for this dissertation). Rows are integrated with columns to form a complete

description of a learning technique (the part of a composite other than the problem definition).

This is implemented by building a probabilistic network (temporal ANN or temporal Bayesian

network) with the topology specified by the selected row, training it together with the other

subnetworks, and incorporating it into the overall mixture model. Appendix B gives technical

details of this implementation. Some training issues and the ramifications for the mixture model

are discussed in Section 3.4.

3.3.3 Metrics for Selecting Architectures

The prototype architectural metrics for temporal ANNs are average autocorrelation values for

the preprocessed data. Memory forms for temporal ANNs can be characterized using a formal

mathematical definition called the kernel function. Convolution of a time series with this kernel

function produces a transformed representation under its memory form [Mo94, MMR97]. The

design principle behind the architectural metrics for temporal ANNs is that a memory form is

49

strongly indicated if the transformed time series has significantly lower uncertainty (conditional

entropy) than the original series.

For example, to compute the degree of match with anMA(1) process, convolution of an

exponential decay window (an MA(1) kernel function) is first applied [MMR97]. The decrease

in entropy obtained by conditioning on this window of widthp is then compared against that for

other memory forms. This estimates the predictive power of the model if chosen as the learning

architecture. The convolutional formalism and metrics for MA, AR, and ARMA processes are

given in Appendix C.

The score for temporal naïve Bayesian network is the average number of variables relevant to

each pair of diagnosable causes (i.e., hypotheses) [He91]. This score is computed by constructing

a Bayesian network by naïve Bayes [Pe88] and then averaging a relevance measure (cf. [KJ97])

on the conditional distribution of symptoms (input attributes) versus syndromes (hypotheses).

This relevance measure may be as simple as an average of the number of relevant attributes.

Kohavi and John [KJ97] survey relevance measures from the literature and compares their merits

for attribute subset selection. Heckerman [He91] also defines a relevance measure for Bayesian

network structuring that may be useful as a prescriptive metric for temporal Bayesian network

architectures.

Finally, the indicator metric for HMMs is the empirical perplexity (arithmetic mean of the

branch factor) for a constructed HMM [Le89].

3.4 Learning Methods

Learning Method Distributional Metric

HME, gradient Modular cross entropy

HME, EM Modular cross entropy + missing data noise

HME, MCMC Modular cross entropy + sample complexity

Specialist-moderator, gradient Factorization size

Specialist-moderator, EM Factorization size + missing data noise

Specialist-moderator, MCMC Factorization size + sample complexity

Table 3. Learning methods and their prescriptive metrics

50

Table 3 lists six learning methods that correspond to the columns of the database of learning

techniques depicted in Table 1. These learning methods are organized under the main heading of

“mixture model used” and the subheading of “training algorithm”. Section 3.4.1 presents the two

available mixture models, justifies their use in constructing the database, and explains how they

govern both the learning architectures and the application of training algorithms. Section 3.4.2

relates the training algorithms to specific learning architectures (described in Section 3.3) and

describes how this combination defines the overall learning technique. Finally, Section 3.4.3

documents how the distributional metrics are derived and how they are used to select the learning

methods.

3.4.1 Mixture Models and Algorithmic Components

This section documents the mixture models that are used to organize specialized time series

models (subnetworks) into a hierarchy, and their relation to training algorithms for each

subnetwork.

Gating
Network

y

y1x

g1

g2 y2

Gating
Network

Expert
Network

Expert
Network

y11
x

x x

g11

g21

y12

Gating
Network

Expert
Network

Expert
Network

x x

g22

g12

xy21 y22

Figure 4. A Hierarchical Mixture of Experts (HME) network

51

A hierarchical mixture of experts(HME), shown in Figure 3, is a mixture model composed of

generalized linear elements (as used in feedforward ANNs) [JJHN91, JJ94]. It can be trained by

gradient learning, expectation-maximization [JJ94], or Markov chain Monte Carlo (MCMC)

methods (i.e., random sampling as in the Metropolis algorithm for simulated annealing)

[MMR97].

A specialist-moderator networkis a new, hierarchical mixture model that can combine

predictions from different learning architectures and whose components have different input and

output attributes [HR98a, RH98]. Specialist-moderator networks are discussed briefly in this

section and in greater detail in Chapter 4.

Figure 4 depicts aspecialist-moderator (SM)network, which combines classifiers in a

bottom-up fashion. Its primary novel contribution is an ability to learn using a hierarchy of

inductive generalizers (components) while utilizingdifferences among input and output attributes

in each component. These differences allow the network to formintermediate targetsbased on

the learning targets of its components, yielding greater resolution capability and higher

classification accuracy than a comparable non-modular network. In time series learning, this

typically means reduced localization error, such as in multimodal sensor integration [HR98a,

RH98]. Each component (box) in Figure 1 denotes a self-contained statistical learning model

such as a multilayer perceptron, decision tree, or Bayesian network. I choose to experiment with

artificial neural networks (ANNs) because the target application is time series classification, and

ANNs readily admit extension to time series [El90, PL98]. The termsspecialistor moderator

may denote arbitrary learning models in the overall network (a tree of components), but are

assumed to be ANNs here.

An SM network is constructed from a specification of input and output attributes for each of

several modules (the leaves of the network). Training data and test input will be presented to

these “specialists” according to this specification. The construction algorithm simply generates

new input-output specifications formoderatornetworks. The target output classes of each parent

are the Cartesian product (denoted××××) of its children’s, and the children’s outputsand the

concatenation of their inputs (denotedοοοο) are given as input to the parent.

52

Moderator
Network

y21 = y11 × y12

x21 = x11 ° x12

y12 = y03× y04y11 = y01× y02

Moderator
Network

Specialist
Network

Specialist
Network

y01

x11 = x01° x02

x01 x02

y02

Moderator
Network

Specialist
Network

Specialist
Network

x03 x04

y03 y04

x12 = x03° x04

Figure 5. A Specialist-Moderator network

One significant benefit of this abstraction approach is that it exploits factorial structure (i.e.,

the ability of high-level or abstract learning targets to be factored) in decomposable learning

tasks. This results in a reduction in network complexity compared to non-modular or non-

hierarchical methods,whenever this structure can be identified (using prior knowledge, or more

interestingly, through clustering or vector quantization methods). In addition, the bottom-up

construction supports natural grouping of input attributes based onmodalitiesof perception (e.g.,

the datachannelsor observable attributes available to each “specialist” via a particular sensor).

In Chapter 5, I demonstrate that the test error achieved by a specialist-moderator network on

decomposable time series learning problems is lower than that for non-modular feedforward or

temporal ANN (given limits on complexity and training time).

3.4.2 Combining Architectures with Methods

The learning combination specified by combining a particular learningarchitecture and

training algorithm determines a learning specification for a single subproblem. When taken in

53

the context of a particularmixture model, this combination corresponds to a single entry (row and

column) in Table 1. Each entry, plus the definition(Ai, Bi) for the subproblem, is therefore

equivalent to one tuple ()11111 ,,,, SBA γθ in a composite

() ()()kkkkk SBASBA ,,,,,,,,,, 11111 γθγθ ÿ=L . All tuples together constituteL , which is used

as a training specification for the entire partition.

Training of each subnetwork occurs concurrently. It isindependentin the case of SM

networks (that is, there is no communication of data between any specialist subnetworks) and

interleavedin the case of HME networks (that is, information is transmitted through the gating

network mechanism because each level is successively updated on every top-down pass). Thus,

SM networks are fully data parallel, while HME networks require synchronization.

3.4.3 Metrics for Selecting Methods

This section outlines the metrics for selecting learning methods, which are further

documented in Appendix C. It is important to note that a distributional metric is afunction of an

entire partition(as applied to a training data set), while one architectural metric is calculatedfor

every subset of that partition. When compiling a composite, the same distributional metric is

used with every row of the lookup table (i.e., the corresponding choice of column is identical).

The distributional metrics for HME networks are based on modular mutual information.

Mutual information is defined as the Kullback-Leibler distance between joint and product

distributions for two random variables, or, in this case, groups of them [CT91]. The conditional

mutual information measure to bemaximizedis that between each subset of attributes and the

desired output, given a fixed sum of the mutual information measures conditioned on all

preceding subsets in some arbitrary ordering. The conditional mutual information measure to be

minimized is the cumulative or “overlap” region [Jo97b]. This minimizes the amount of

uncertainty (i.e., “work”) to be performed by the gating component and tends to evenly distribute

this work among all branches of the tree-structured mixture model (cf. [JJ94]). This metric is

derived and fully documented in Appendix C.

The metrics for specialist-moderator networks are proportional to factorization size (the

number of distinguishable equivalence classes of the overall mixture divided by the product of its

components’). This metric is derived and fully documented in Appendix C.

54

To select a learning algorithm, gradient learning is defined as a baseline, and a term is added

for the gain from estimation of missing data (by EM) [JJ94] or global optimization (by MCMC)

[Ne96], adjusted for the conditional sample complexity.

3.5 Theory and Practice of Composite Learning

This section concludes the presentation of the composite learning algorithmSelect-Netand

the metric-based model selection phase. First, I list the main desiderata for composites and the

metrics used to select their learning model portions. These are related to hypotheses that may be

evaluated for the metrics, and for the normalization process that allows them to be compared.

Second, I outline a technique for calibrating metrics based on representative data sets (corpora).

Third, I list the uses of the normalized metric values in my system.

3.5.1 Properties of Composite Learning

The desired properties for all architectural and distributional metrics are as follows:

1. Each can be normalized and compared on an objective scale to any other architectural or

distributional metric for an arbitrary learning problem defined on an attribute subset or

partition. This suggests that the metric be quantitative and continuous-valued.

2. Each ispositivelycorrelated with the expected performance of the corresponding learning

architecture or method. This hypothesis can be, and is, tested empirically, with the

findings reported in Chapter 5 as part of the general results on composite learning.

3. Each isuniquelycorrelated (or more strongly correlated than any other metric, with a

high degree of statistical confidence) with this expected performance. Again, this

hypothesis can be, and is, tested as part of the evaluation experiments for composite

learning.

3.5.2 Calibration of Metrics From Corpora

Calibration of model selection metrics from corpora is a well-tested method in empirical

methods for speech recognition [Le89] and natural language processing. The formula for

normalizing metrics in this system, given in Equation 1 of Section 3.1.3, is an application of this

55

method to learning from heterogeneous time series. Previously, I have successfully used a very

similar approach to calibrate metrics for technique selection in heterogeneous file compression.

Details are documented briefly in Appendix D, but the interested reader is referred to [HZ95] for

the full explanation. The corpora used to calibrate my normalization function comprise both real-

world and synthetic data. The normalization parameters that are being estimated, or learned, by

this higher-order training process are theshapeand scale parameters,tτ and λτ, for each

multivariate Gamma distribution (with 5 variables for learning architectures and 6 for learning

methods).

3.5.3 Normalization and Application of Metrics

Once the metrics are properly normalized, the selection mechanism for learning architectures

and methods is straightforward: it suffices to choose the row or column corresponding to the

maximal normalized metric value (ties are very rare when the metrics in question do not have the

maximum value on the normalized scale). The metrics, however, are also applied as feedback for

partition search (and can be used in other wrapper-driven parameter tuning systems, cf. [Ko95,

KJ97]).

56

4. Hierarchical Mixtures and Supervised Inductive Learning

Decomposition of supervised learning tasks in this dissertation entails three stages:

subproblem definition, model selection for subproblems, and reintegration of trained models.

This chapter examines the third and final stage, reintegration, by means ofhierarchical mixture

models. First, I present the problem ofdata fusion in composite learning, and a generic,

hierarchical approach using probabilistic networks. This generic design originated concurrently

with that of the learning systems for the first two stages. Second, I survey thehierarchical

mixture of experts(HME), a multi-pass architecture for integration of submodels. HME supports

a type of self-organization over submodels that are assumed to be identical in the original

formulation. I adapt HME to multi-strategy learning from time series. Third, I survey the

specialist-moderator(SM), a single-pass architecture for integration of non-identical models. The

SM network was specifically designed for data fusion in decomposition of learning tasks. Fourth,

I present the high-level algorithms for constructing and training hierarchical mixture models of

both types using composites (specifications of subnetwork types and training algorithms). The

constructions and training procedures raise some analytical issues and performance issues, which

I address here. Fifth, I investigate some important properties of hierarchical mixture models that

are useful in evaluating their performance empirically.

Specialist/Expert
Subnetwork

y01

y11

x11

Moderator/Gating
Subnetwork

Performance Element:
Time Series Classification

y02

Specialist/Expert
Subnetwork

x02x01

Preprocessing Element:
Attribute Partitioning

Learning
Element

Heterogeneous Time Series
(e.g., Crisis Monitoring)

(x, y)

Figure 6. Role of hierarchical mixtures in decomposition of time series learning

57

4.1 Data Fusion and Probabilistic Network Composites

Figure 6 depicts a learning system for decomposable time series. The central element of this

system is a hierarchicalmixture model− a general architecture for combining predictions from

submodels. In this dissertation, the submodels are temporal probabilistic networks such as

recurrent ANNs. Attribute partitioning, described in Chapter 2, produces the subdivided inputs,

x0n, to thesespecialist, or expert, subnetworks (henceforth calledspecialists or experts).

Unsupervised learning methods such as self-organizing feature maps (SOFMs) [Ko90] and

competitive clustering [Ha94] are applied to form intermediate targetsy0n, also as described in

Chapter 2. The subnetwork types, the algorithms used to train them, and the overall organization

of the mixture model (including the types ofmoderator, or gating, subnetworks used), are

selected from a database of components. This database and the metric-based model selection

process are documented in Chapter 3. The overall concept (y11) is the learning target for the top-

level moderator subnetwork (henceforth called amoderator) in this hierarchy. Definition of

inputs and outputs for specialists and moderators is the topic of this chapter.

This section presents hierarchical mixture models for reintegrating all the trained components

of a composite time series model. Two kinds of mixtures are applied in this research:specialist-

moderator(SM) networks andhierarchical mixtures of experts(HME). I begin by outlining the

general framework of hierarchical mixture models and howSM networksand HME relate to

problem decomposition and multi-strategy learning. I then explain how sensor and data fusion

applications make this relationship especially important to time series learning. Finally, I discuss

the role of hierarchical mixtures in my overall system, especially their benefits towards attribute-

driven problem decomposition and metric-based model selection for composite learning.

4.1.1 Application of Hierarchical Mixture Models to Data Fusion

In time series analysis, the problem of combining multiple models is often driven by the

sources of datathat are being modeled. In formal terms, a source of data is any stochastic

process that contributes to the observed data. For time series, we are interested in actually

identifying, from training data, the best probabilistic match to a prototype of some known

stochastic process. This is the purpose of metric-based model selection, where each “known

process” has its own architectural metric and prescribed learning architecture. Traditionally,

domain knowledge about the sources of data is used in their decomposition [HR98a, HGL+98].

This is discussed in Section 1.1; examples of heterogeneous time series with multiple data

sources include multimodal sensor integration (sensor fusion) and multimodal HCI. Chapter 2

58

describes a knowledge-free approach that can be applied when such information is not available,

but the learning problem is decomposable.

A mixture modelis one that combines the outputs of a finite set of subordinate models by

weighted averaging [Ha94]. The weights are referred to asmixing proportions[Ha94], mixing

coefficients, gating coefficients[JJ94], or simply “weights”. Traditionally, a mixture model is

formally defined as a probability density function (pdf),f, that is the sum of weighted

contributions from subordinate models:

fn are the individual pdfs for mixture components, drawn from populationsSn, 1 ≤ n ≤ N, andf

is a pdf over samplesy drawn uniformly fromS. That is, fn denotes the likelihood thatSi

contributesy to the mixtureS. πi denotes thenormalized weightfor this likelihood [Ha94]. The

parametersθ θ θ θ include all unknowns in the model upon which the distributionsfn are to be

conditioned (i.e., the internal parameters of the subordinate models). As I explain below, this

generalizes over all of the mutable parameters in the learning architecture, such as network

weights and biases. The hyperparametersπ π π π are simply the mixing coefficients. The mixture

modeling problem is to fitππππ, given training data (y1, …, yn, y). An alternative definition [JJ94]

that is more familiar to the nomenclature of connectionist (probabilistic network) learning is to

estimate the distribution ofy as a weighted sum of predictionsyn (the outputs of expert

submodels, henceforth referred to as “experts”):

 πi still denotes thenormalized weightfor a likelihood function over samples from a

population, but we have now specified that theestimatorfor the likelihood function is the output

of an expert. As Jordan and Jacobs [JJ94] and Haykin [Ha94] note, experts may be arbitrary

learning components. For example, Haykin specifically considers experts that arerule generators

or arbitrary probabilistic network regression models, with real-valued, discrete, or 1-of-C

nn

N

n
n

N

n
nn

allfor0and1where
1

1

≥=

=

�

�

=

=

ππ

π yy

() ()

n

ff

n

N

n
n

n

N

n
n

allfor0and1where

;,;

1

1

≥=

=

�

�

=

=

ππ

π ÿy�ÿy

59

(“locally”) coded targets [KJ97, Sa98]. In this dissertation, I have considered only discrete

(including binary) and 1-of-C-coded classification.

Finally, an even more flexible formulation of mixture models is asa hierarchical mixture

network, whose vertices all represent subnetworks. The leaves are experts or specialist networks;

the internal vertices, gating or moderator subnetworks. The target distributionf(y) is thus

described as a parameter estimation problem, where the submodel parametersθθθθ belong to

probabilistic networks such as feedforward or recurrent ANNs. For feedforward ANNs (also

calledmultilayer perceptrons), the mixture model description is:

()

() ()

()
()

() ()

() n
I

i

n
i

nn
j

nnn

n
H

j

nnnnnnn
k

nnn

I

i

n
iijjj

n
j

H

j

n
jjkkk

n
k

n

Hjxuah

Okhvbf

f

Hjyuah

Okhvbf

Nnf

n

ijjj

n

jjkkk

≤≤��
�

�
��
�

�
+=

≤≤��
�

�
��
�

�
+=

=

≤≤�
�

�
�
�

�+=

≤≤��
�

�
��
�

�
+=

≤≤=

�

�

�

�

=

=

=

=

1,

1,

1,

1,

where

1,

1

1

1

1

σ

σ

σ

σ

x

xx

xy

y

yy

yy

fk and hj denote outputs from the output and hidden layers, respectively, of a multilayer

perceptron. It is the overall outputfk that we seek to estimate.σ denotes a transfer function (from

the hidden to the output layer forσk; from the input to the hidden layer forσ j). u andv denote

ANN weights;a andb, ANN biases. The size of each network layer in units is denotedI, H, or

O, for input, hidden, and output layers, respectively. Finally, the superscriptn over any function,

parameter, or size variable indicates that it belongs to expert or specialistn. In some ways, this

characterization of a mixture model is more specific than the previous two (it restricts the

learning architecture to a probabilistic network− a feedforward ANN in the above mathematical

definition). It is, however, also moregeneral, because it permits a general, possibly nonlinear,

form for the fusion mechanism (rather than forcingf to be a linear combination offi values).

60

The problem of data fusion, in the context of composite learning for time series, can naturally

be interpreted as one of mixture modeling. Each expert is a probabilistic network trained on

some intermediate target concept, which was formed by attribute partitioning and problem

redefinition (e.g., competitive clustering). This unsupervised learning phase is described in

Chapter 2. The particular expert (architecture and training) used is determined using metric-

based model selection on the resulting subproblem definition and a database of available

components. The overall organization of the mixture model is also selected by metric-based

analysis. The entire analytical step is described in Chapter 3. The selected experts are trained,

resulting in classifiers that map subsets of the input to intermediate predictions. In time series

learning, training data is typically a sequence ofhistorical observationsof the data, and the

predictions are made on acontinuationof this input [GW94]. Section 1.1 and Chapter 5 describe

synthetic and real-world experiments on time series prediction using this paradigm. Both

“laboratory” applications (where continuations are simulated or have been previously collected

and buffered) and “field” applications (where the new input data is collected online, and learning

occurs during this collection)7 conform to the paradigm [GW94]. This dissertation considers both

modes of time series analysis but focuses on learning in the offline mode and application of the

performance element (classification fordiagnostic monitoringand prediction) in the online mode.

4.1.2 Combining Classifiers for Decomposable Time Series

To understand how mixture models are used in inductive concept learning from time series,

let us interpretyi as a 1-of-C-coded output vector from each ofn classifiers. These may be

decision structures (trees, lists, regression splines, etc.), genetic classifiers, or− in the scope of

this research− Bayesian and artificial neural networks. We wish to weight these classifiers to

produce the target predictiony, an overall classification for the observed inputs. In general

concept learning by mixture models, all inputsx are presented to each subnetwork during

training, and the trained network is treated as the classifierfi. Based upon the attribute-driven

problem decomposition method of Chapter 2, I emend this tosubsetsof x. This is depicted asx0n

in Figure 6. The outputs of specialists arepredictedvalues, n0ŷ of y0n (which denote the actual

values, or desired output). Thesen0ŷ values are passed on as input to moderators at the next

level, as depicted in Figure 6.

7 This is also known assituated[RN95], lifelong [Th96], or in vivo [WS97] learning.

61

The complete input for a moderator includes (at least) the inputs to all of its descendants and

the predictions of its children. It is important to note that, although the specialists are trained

concurrently, they are not necessarily trainedindependently; specifically, HME is a multipass

algorithm that iteratively updates the weights of gating and expert subnetworks. The classifier

produced by this interleaved training algorithm still operates in similar fashion (a single, bottom-

up pass) in the performance element (also referred to asrecall modein the ANN literature)

[PL98]. SM networks, by contrast, train subnetworks in a single bottom-up pass, so that all

specialists or intermediate-level moderators are used to generate predictionslnŷ only once.

The mixture model thus refers to the function that maps mixture components to overall

outputs. In connectionist (probabilistic network) learning, however, this term is informally

extended to include the learning algorithm for weights. As the third definition shows, the

subordinate models (including moderators) may be self-contained learning architectures.

Thus, when I refer to “combining models”, three definitions (the first two informal; the third,

formal) apply:

1. Combining subnetworks. The mixture model expresses weights on the outputs of each

subnetworkon each exemplar, after training.

2. Classifiers. A classifier is the performance element for which a probabilistic network

can acquire knowledge, in the form of decision structures, rules, etc. In the heuristic

classification framework of this dissertation, a classifier is fully described by the values

of network parameters after training. The mixture model expresses weights on the outputs

of each classifieron each exemplar.

3. Predictions. The mixture model expresses weights on predictions of the model on each

exemplar. The predictions are the elements of the subpopulations for which mixing

coefficients are being estimated relative to an overall distribution.

The next two sections definepartitioning and aggregationmixtures, two general types of

mixture models that are exemplified by HME and SM networks.

4.2 Composite Learning with Hierarchical Mixtures of Experts (HME)

This section presents the HME architecture and discusses its adaptation to multi-strategy

learning, as anintegrativemethod. HME is one of two mixture models that may be selected in

62

my composite learning system. I review existing learning procedures for HME, consider how

alternative optimization techniques (such as Markov chain Monte Carlo algorithms for Bayesian

learning [Ne96, Jo97a]) may be applied, and discuss the incorporation of these methods into the

“repertoire” of learning techniques presented in Chapter 3.

4.2.1 Adaptation of HME to Multi-strategy Learning

Gating
Network

y

y1x

g1

g2 y2

Gating
Network

Expert
Network

Expert
Network

y11
x

x x

g11

g21

y12

Gating
Network

Expert
Network

Expert
Network

x x

g22

g12

xy21 y22

Figure 7. A Hierarchical Mixture of Experts (HME) network

Figure 7 shows an HME network of height 2, with branch factor 2 (i.e., 4 expert networks at

the leaves). Note that the expert and gating networks all receive the same input x. Equally

important, the target output valuesylj, for level l and (gating or expert) networkj, are also

identical.

TraditionalHME uses a tree-structured network ofgeneralized linear models(GLIMs), or

fixed, continuous nonlinear functions with linear parameters [MN83]. The class of GLIMs

includes single layer perceptrons with linear, sigmoidal, and piecewise linear transfer (activation)

functions; these implement regression models, binary classification models, and hazard models

63

for survival analysis, respectively [JJ94, Ne96]. GLIMs of the type listed above are used at the

leaves of the network asexpert subnetworks in the mixture. The mixing is implemented by

gatingGLIMs that combine expert network outputs.

In place of GLIMs, I use general feedforward networks with nonlinear (sigmoidal or

hyperbolic tangent) or piecewise linear input-to-hidden layer transfer functions and linear hidden-

to-output layer transfer functions. The purpose of this modification is to permit an arbitrary

fusion function to be learned. I will refer to this function, which is implemented by all of the

interior (moderator) subnetworks as a whole, as amixture function. As Kohavi et al [KSD96]

point out, however, mixture functions that arenot linear combinations of the input (i.e., those that

do not have the same mixing coefficients for any input data) are semantically obscure.

Furthermore, the real issue is not the ability to fit a mixture perfectly, because (just as in general

concept learning) it is always possible to learn by rote if there are sufficient model resources. The

true criterion isgeneralizationquality. In general concept learning as well as mixture modeling,

we can evaluate generalization by means of cross validation methods [Ri88, Wo92]. The upshot

of these considerations is that some discretion is essential when we undertake to use a general

mixture function instead of a linear gating or fusion model.

Finally, in order to adapt HME todecompositionof time series learning problems, it is

necessary to commit a crucial change to the construction. Specifically, the inputs to experts (at

the leaves of the tree-structured network) arenonidentical. Chapter 2 describes attribute

partitioning algorithms that split the input data along “columns”. Each expert receives the data

corresponding to a single subset of input attributes (i.e., the columns or channels specified by that

subset), and each gating network receives as inputs the concatenation of inputs to each expert and

the normalized output from each expert. The target outputs at every expert and gating level are

identical to one another and to the overall target. In the current implementation, only SM

networks use the reformulated targets from clustering; Chapter 5, however, documents

experiments with both clustered and non-clustered intermediate concepts. Thus, a training

exemplar is a set of subnetwork outputs, concatenated with the total input to all experts in the

domainof the moderator (i.e., the subtree rooted at that moderator). Training a moderator means

revising its internal weights to approximate a mixture function.

64

4.2.2 Learning Procedures for Multi-strategy HME

HME networks are trained using aninterleavedupdate algorithm that computes the error

function at the topmost gating network and propagates credit down through the hierarchy, on

every top-down pass (a single trainingepoch). This generic procedure can be specialized to

expectation-maximization (EM), gradient, and Markov chain Monte Carlo (MCMC) learning

algorithms.

Jordan and Jacobs studied EM-based learning in HME networks [JJ94]. The algorithm I use

to implement learning techniques under the “HME, EM” column of my database is partly based

the one described this paper. Gradient learning in HME is based on backpropagation of error

using a hierarchical variant of the delta rule described in Appendix B; the probabilistic

interpretation follows Bourlard and Morgan [BM94]. Finally, the MCMC method I use to

perform Bayesian learning is the Metropolis algorithm for simulated annealing. This global

optimization algorithm and its integration with hierarchical mixture models is also documented in

Appendix B.

4.3 Composite Learning with Specialist-Moderator (SM) Networks

This section presents the SM network architecture and discusses its adaptation to multi-

strategy learning, as anintegrativemethod. The SM network, which was developed by Ray and

Hsu [RH98, HR98a], is one of two mixture models that may be selected in my composite learning

system. I review the construction of SM networks and, as for HME, consider how alternative

optimization techniques such as MCMC methods may be applied, and discuss the incorporation

of these methods into my database of models.

4.3.1 Adaptation of SM Networks to Multi-strategy Learning

Figure 8 shows an SM network with two layers of moderators. The primary novel

contribution is the model’s ability to turn attribute-based learning task decomposition to

advantage in three ways:

1. Reduced variance. On decomposable time series learning problems, SM networks exhibit

lower classification error than non-modular networks of comparable complexity. Chapter 5

65

reports results that demonstrate this in a manner very similar to that of Rueckl [RCK89] and

Jordanet al [JJB91].

2. Reduced computational complexity. Given a target criterion (desired upper bound on

classification error), SM networks require fewer trainable weights and fewer training cycles

to achieve convergence on decomposable problems.

3. Facility for multi-strategy learning . My experimental results on several test beds, both real

and synthetic, show that gains can be realized using specialists ofdifferent typeswithin the

SM network. These specialists are selected from the database documented in Chapter 3. The

experimental findings are presented in Chapter 5.

Moderator
Network

y21 = y11 × y12

x21 = x11 ° x12

y12 = y03× y04y11 = y01× y02

Moderator
Network

Specialist
Network

Specialist
Network

y01

x11 = x01° x02

x01 x02

y02

Moderator
Network

Specialist
Network

Specialist
Network

x03 x04

y03 y04

x12 = x03° x04

Figure 8. A Specialist-Moderator (SM) network

The main practical distinction between SM networks and HME are the ways in which each

one achieves reduced variance and reduced computational complexity. SM networks trade more

rapid growth in complexity for increasedresolution capabilityand reduction oflocalization

error. By exploiting differences among the problem definitions for each subnetwork, an SM

network can distinguish among more concepts than its components, and to achieve higher

classification accuracy than a comparable non-modular network. In time series learning

66

applications such as multimodal sensor integration, this localization error may be reduced in

space or time [JJB91, SM93].

The construction of SM networks allows arbitrary real inputs to the expert (specialist)

networks at the leaves of the mixture tree, but constructs higher level input and output attributes

based uponx0j (see Figure 6). This is one of the two main differences between SM networks and

HME. The other is that training of the specialist-moderator network proceeds in a single bottom-

up pass (i.e., a preorder traversal), while HME networks are trained iteratively, in a top-down

fashion (i.e., one post-order traversalper training cycle, during the M step of EM). These

algorithms can also be considered as proceeding in a breadth-first order: bottom-up for the

specialist-moderator network, multiple up/down (estimation/maximization) passes for HME

[JJ94]. The construction algorithm for SM networks is as follows:

Notation

D training set

A set of input attributes

B set of output attributes

F constructive induction algorithm

n number of exemplars

x(i) input vectori

y(i) output vectori

xj
(i) valuej in input vectori

yj
(i) valuej in output vectori

I number of input channels

O number of output channels

H height of the S-M tree

Nl number of networks at levell

Al complex input attribute vector atl

alj complex input attributej at l

alj
S specialist part of inputj at l

alj
M moderator part of inputj at l

Bl complex output attribute vector atl

blj complex output attributej at l

xlj reformulation of (x(1), ...,x(n)) by alj

(a set of vectors)

ylj reformulation of (y(1), ...,y(n)) by blj

flj S-M networkj at levell

Nlj number of children offlj

Ilj number of inputs toflj

Olj number of outputs fromflj

Sl[j] start index for children of moderator

flj

El[j] end index for children offlj

67

Given:

1. A training setD = ((x(1), y(1), …, (x(n), y(n))) with input attributesA = (a1, …, aI) such that x(i)

= (x1
(i), …, xI

(i))

2. A constructive induction algorithmF such thatF(A, B, D) = (A0, B0)

3. ljN for lNjHl ≤≤≤≤ 1,1 (precomputed by dynamic programming)

Algorithm SM-net:

UsingF onA andD, deriveA0 = (a01, …,
00Na) andB0 = (b01, …,

00Nb).

Let (x0
(1), …, x0

(n)) be the new representation of the input data underA0, wherex0j
(i): x(i) :: a0j : A

Let (y0
(1), …, y0

(n)) be the new representation of the output data underB0, wherey0j
(i): y(i) :: b0j : B

Train networks (f01, …,
00Nf), using training inputsx0j

(i) and desired outputsy0j
(i) for specialistf0j

for l := 1 toH // bottom-up

for j := 1 toNl

Sl[j] := �
−

=
+

1

1

1
j

k
lkN // start index

El[j] := Sl[j] + Nlj - 1 // end index

alj
S := NULL // NULL ° al-1,k = al-1,k

xlj
S := NULL // NULL ° xl-1,k = xl-1,k

alj
M := NULL // NULL ° bl-1,k = bl-1,k

xlj
M := NULL // NULL ° yl-1,k = yl-1,k

blj := UNIT // UNIT × bl-1,k = bl-1,k

ylj := UNIT // UNIT × yl-1,k = yl-1,k

for k := Sl[j] to El[j]

alj
S := alj

S ° bl-1,k // specialist part

alj
M := alj

M ° al-1,k
M // moderator part

blj := blj × bl-1,k // new output attribute

for i := 1 ton

xlj
(i) S := xlj

(i) S ° yl-1,k
(i) // new input (S)

xlj
(i) M := xlj

(i) M ° xl-1,k
(i) M // new input (M)

ylj
(i) := ylj

(i) × yl-1,k
(i) // new output

alj := alj
S ° alj

M // new input attribute

for i := 1 ton

xlj
(i) := xlj

(i) S ° xlj
(i) M // new input

68

Train moderator networkflj with

xlj = (xlj
(1), …, xlj

(n)) and

ylj = (ylj
(1), …, ylj

(n))

return (f01, …,
00Nf , …, fH1)

SM-net thus produces networks such as the one depicted in Figure 8. Network complexity is

measured in the number of weights among generalized linear units in an ANN.SM-net produces

moderator networks whose worst-case complexity is the product of that of their children. This

growth is limited, however, because the tree height and maximum branch factor are typically

(very) small constants. Relevant details of this combinatorial analysis appear in Appendix A.

Two determinants of the performance of an SM network are: the empirical likelihood of

finding efficient factorizations of a data setD; and the difficulty of learning this factorization.

The first quantity depends on many issues, the most important being the quality ofF, the

constructive induction algorithm. I consider the case where a goodB0 is already known or can be

found by unsupervised learning methods, including knowledge-based constructive induction

[Be90, Do96] and attribute-driven problem reformulation (e.g., subset selection [Ko95, KJ97] and

partitioning). To address the second issue experimentally, I demonstrate that the achievable test

error on efficient factorizations learned with an SM network is lower than that of non-modular

feedforward or temporal ANNs (of comparable complexity) trained with the original data.

4.3.2 Learning Procedures for Multi-strategy SM Networks

SM networks are trained using a single-pass algorithm for updates in the overall network.

That is, many training cycles or individual epochs (batch updates for backpropagation, EM steps,

or candidate state transitions in MCMC learning) occur in order to complete the training for one

subnetwork.

Gradient learning in SM networks was introduced in [RH98] and [HR98a]. The algorithm I

use to implement learning techniques under the “SM, gradient” column of my database is based

on this one. As does HME, SM also admits EM and MCMC learning for certain specialist

architectures. Appendix B gives technical details of these implementations; Chapter 5, some

important experimental results using these implementations.

69

4.4 Learning System Integration

The overall design of both hierarchical mixture models I have addressed here (modified HME

and SM networks) is the result of a concurrent engineering process. The data fusion methodology

complements the first two phases of my learning system− problem reformulation and multiple

model selection. Based on an attribute-driven decomposition of a given time series learning

problem, the mixture model mustdistribute the workloadin a manner most appropriate to the

characteristics of the data (as reflected in the way the problem was divided). Model selection not

only chooses the specialist or expert network types independently for each subproblem, but also

selects the most appropriate type of mixture model and training algorithm for the entire problem

(i.e., all specialist and moderator subnetworks) as a function of the whole partition. It also

provides feedback for the partition search, in order to limit the number of mixture models that are

applied and eliminate the “bad splits” that do not balance the work evenly enough across mixture

components. This section addresses the definition and utilization of “good splits” and the

recognition of bad ones.

4.4.1 Interaction among Subproblems in Data Fusion

The objective of mixture modeling, according to Section 4.3.1, is to reduce variance and

computational complexity and to facilitate multi-strategy learning. In order to reduce both

variance (classification error)and complexity (required convergence time and network

complexity), a reformulation of the problem must be exploited [Mi80, Be90, Hr92]. The solution

I present through the modified HME and SM algorithms is to distribute the workload by

maximizing the computational gain from specialists or experts (i.e., doing more of the work of

learning at the lowest levels). This automatically reduces the difficulty of themixture estimation

task [DH73, CKS+88, JJ94]. The cost of this improvement is that the interaction among mixture

components must be modeled. This is discussed in Section 3.4 and Appendix C.

4.4.2 Predicting Integrated Performance

Section 3.4.3 documents a combinatorial measure forfactorial interaction and an

information theoretic measure for probabilistic interaction that give rise, respectively, to the

prescriptive metrics for SM networks and HME. In order to estimate the overall performace for a

mixture model on an entire partition (without knowing in advance what the specialist and

70

moderator types are), these metrics must account for the precise mode of interaction that is

exploited by the mixture. Appendix C documents the derivation of these distributional metrics.

4.5 Properties of Hierarchical Mixture Models

This section concludes the presentation of the HME and SM networks and the data fusion

phase of composite learning. First, I list the criteria for network complexity and explain its

relevance to performance evaluation as documented in Chapter 5. Second, I discuss how variance

reduction is achieved in hierarchical mixtures and how this can be evaluated.

4.5.1 Network Complexity

To test the hypothesis that hierarchical mixtures reduce network complexity for

decomposable learning problems, I first define a measure of complexity and identify other figures

of merit for learning performance. These shall be held constant relative to network complexity

(or vice versa). ANN, HMM, and Bayesian network complexity can all be defined in (slightly

different) terms of graph complexity: that is, the number of trainable weights. The simplest

measure for ANNs is the total number of connections between successive hidden layers (bipartite

graph size in edges), plus the sizes of layers with bias parameters (bipartite graph size in vertices).

For Bayesian networks, complexity grows exponentially with the number of values of an attribute

as a base and the number of parents for a vertex (denoting a random variable) as an exponent.

Network complexity is just one measure of performance. Classification accuracy on test input is,

of course, an essential standard, and convergence time and number of exemplars needed to reach

the target accuracy is also important in situated learning. My first method for evaluating the

performance of a model is to set a target classification accuracy and compile the learning curves

[Ka95] (accuracy versus training cycles for different numbers of exemplars) and complexity

curves (accuracy versus training cycles for different numbers of trainable parameters). An

alternative, when the achieved accuracies for the models being compared are far apart, is to plot

them given fixed network complexity and training time.

4.5.2 Variance Reduction

Variance reduction in mixture modeling is achieved by combining multiple classifiers.

Recent research has shown how inductive learning algorithms can be augmented byaggregation

mixturessuch as bootstrap aggregation (orbagging) [Br96], stacking[Wo92], and SM networks

[HR98a, RH98], and bypartitioning mixturessuch asboosting [FS96] and HME [JJ94].

71

Aggregation uses (independent) differences in sampled input as given to each expert to estimate a

mixture (by voting in bagging; by a mixture function in stacking). Partitioning mixtures are

multi-pass and adjust the sample weights during learning.

72

5. Experimental Evaluation and Results

This chapter documents the evaluation of the time series learning system through experiments

on both synthetic and real-world data sets. First, I present a learning test bed (wide-area crop

condition monitoring) that demonstrates how time series can be heterogeneous, and how a

hierarchical mixture model can be used to improve learning. This finding leads to further

experiments on model integration and decomposition of learning tasks by attribute-driven

constructive induction. Second, I report on experiments with synthetic data sets (corpora) that

test the effectiveness of metrics for model selection. These synthetic corpora and two real-world

corpora are used to calibrate the normalization model for metrics. Third, I document

improvements to classification accuracy and learning efficiency based on attribute partitioning. I

first report on performance gains as achieved through exhaustive enumeration of partitions – then

examine the tradeoff between accuracy and efficiency when heuristic search is used. Fourth, I

compare the performance of the integrated learning system to that of other mixture models and

non-modular inductive learning techniques.

5.1 Hierarchical Mixtures and Decomposition of Learning Tasks

This section presents the results of experiments using hierarchical mixture models on time

series with varying degrees of decomposability (see Section 1.4.3).

5.1.1 Proof-of-Concept: Multiple Models for Heterogeneous Time Series

The experiments first used to demonstrate heterogeneity in time series for this research were

conducted using a real-world data set called thecorn condition monitoringtest bed. This test bed

was developed specifically to demonstrate non-Markovity and heterogeneity in time series

[HR98a, HGL+98].

Figure 9 depicts an (atemporal) spatially referenced data set for diagnosis inprecision

agriculture. The inputs are: yield monitor data, crop type, elevation data and crop management

records; the learning target,cause of observed low yield(e.g., drought). Such classifiers may be

used inrecommendersystems [RV97] (also callednormativeexpert systems [He91]) to provide

decision support for crop production planning in subsequent years. I collected biweekly remote

sensing images and meteorological, hydrological, and crop-specific data for learning to classify

73

influents ofexpected crop quality(per farm) asclimatic (drought, frost, etc.) ornon-climatic(due

to crop management decisions).

Figure 9. An agricultural decision support expert system

Figure 10 contains bar charts of the mean squared error from 125 training runs using ANNs

of different configurations (5 architectures, 5 delay constant or momentum values for gradient

learning, and 5 averaged runs per combination). On all runs, Jordan recurrent networks and time-

delay neural networks failed to converge with momentum of 0.99, so the corresponding bars are

omitted. Cross validation results indicate that overtraining on this data set is minimal. As a

preliminary study, I used a gamma network to select the correct classifier (if any) for each

exemplar from among the two best overall networks (input recurrent with momentum of 0.9 and

TDNN with momentum of 0.7). The error rate was reduced by almost half, indicating that even

with identical inputs and targets, a simple mixture model could reduce variance. These results are

depicted in Figures 11 and 12.

This experiment illustrates the usefulness of learning task decomposition over heterogeneous

time series. The improved learning results due to application of multiple models (TDNN and IR

specialists) and a mixture model (the Gamma network moderator). Reports from the literature on

common statistical models for time series [BJR94, GW94, Ne96] and experience with the (highly

Copyright © 1996 AFS, Inc.

74

heterogeneous) test bed domains documented here bears out the idea that “fitting the right tool to

each job” is critical.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
L2

C
rit

er
io

n

Elman Jordan Input TDNN Backprop

Network Architecture

Final Training Error for 5 Runs of Corn Condition, 1985-1995

0.7

0.8

0.9

0.95

0.99

Momentum or
Time Constant

Figure 10. Performance of different learning architectures for crop condition monitoring

86

88

90

92

94

96

98

100

P
er

ce
nt

A
cc

ur
ac

y

1 2 3 4 5 6 7 8 9 10 11

Year Number

Training Accuracy for Corn Condition 1985-1995,
Gamma Network Moderator

Moderator

TDNN
Specialist

IR
Specialist

Figure 11. Training results for partitioned HME with gradient learning

75

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

A
cc

ur
ac

y

1 2 3 4 5 6 7 8 9 10 11

Year Number

Cross Validation Accuracy for Corn Condition 1985-1995,
Gamma Network Moderator

Moderator

TDNN
Specialist

IR
Specialist

Figure 12. Cross validation results for partitioned HME with gradient learning

Research that is related to this dissertation [WS97, HGL+98] applies this methodology to

specific problems in diagnostic monitoring for decision support (orrecommender) systems

[RV97].

5.1.2 Simulated and Actual Model Integration

Figure 13 visualizes a heterogeneous time series. The lines shown are phased

autocorrelograms, or plots of autocorrelation shifted in time, for (subjective) weeklycrop

conditionestimates, averaged from 1985-1995 for the state of Illinois. Eachpoint represents the

correlation between one week's mean estimate and the mean estimate for a subsequent week.

Eachline contains the correlation between values for a particular week and all subsequent weeks.

The data is heterogeneous because it contains both an autoregressive pattern (the linear

increments in autocorrelation for the first 10 weeks) and a moving average pattern (the larger,

unevenly spaced increments from 0.4 to about 0.95 in the rightmost column). The autoregressive

process, which can be represented by a time-delay model, expresses weather “memory”

(correlating early and late drought); the moving average process, which can be represented by an

exponential trace model, physiological damage from drought. Task decomposition can improve

performance here, by isolating the AR and MA components for identification and application of

76

the correct specialized architecture (a time delay neural network [LWH90, Ha94] or simple

recurrent network [El90, PL98], respectively).

Phased Autocorrelogram of Corn Condition, 1985-1995

0

0.2

0.4

0.6

0.8

1

1.2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Week of Growing Season

C
or

re
la

tio
n

Week 4
Week 5
Week 6
Week 7
Week 8
Week 9
Week 10
Week 11
Week 12
Week 13
Week 14
Week 15
Week 16
Week 17
Week 18
Week 19
Week 20
Week 21
Week 22
Week 23
Week 24
Week 25
Week 26
Week 27
Week 28
Week 29

Figure 13. Phased autocorrelogram (plot of autocorrelation shifted over time)

for crop condition (average quantized estimates)

Figure 14 shows a single line of this autocorrelogram plotted against a correlogram

between predicted and actual values for crop condition. 26 temporal ANNs (all of the input

recurrent type) are trained to produce this plot. The first 25 arepredictor ANNs, trained to

predict inputX(t + k) from X(t), 1 ≤ t ≤ 25, 1≤ k ≤ 25. I then train a single input recurrent ANN to

mapX(t + k) to a discrete predicted value ofY(t + k). This could also be a nominal class such as

{very poor, poor, fair, good, very good}, which is the learning target in Figures 2 and 3. We can

think of this asa predictive evaluation, or simulation, model. The plot shows that recurrent

ANNs can be expected to outperform linear prediction methods (and certainly outperform naïve

linear or quadratic regression, which invariably predicts no change in the condition from one

week to the next) in the “middle to distant future”. This is important because the utility of near-

term predictions tends to be lower for decision support systems [RN95].

77

Prediction using Weeks 1-11

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25

SRN

Original

Figure 14. Predictive simulation for crop condition, using precipitation, temperature,

working days, and maturity level up to Week 11, inclusive

5.1.3 Hierarchical Mixtures for Sensor Fusion

This section documents a sensor fusion experiment as applied tomusical tune classification.

First, I explain the choice of an experimental testbed for the moderator network. In my

experiments using hierarchical mixtures, I focused primarily onclassificationof time series. The

reasons for this restriction are that:

1. Classification of signals from multiple sources (sensor modalities, transforms, etc.)

showcases the data fusion capabilities of the architecture, and can be used to benchmark the

learning algorithm in comparison to other methods for multimodal integration (usually of

predictions on time series).

2. Signal processing can be used to synthesizeA0, the reformulated input attributes; such

preprocessing methods are well understood [Ha94]. I discuss the experimental usefulness of

this facility below.

3. Simple conceptual clustering can then extract the equivalence classes (e.g., usingk-means

clustering or other vector quantization methods such as competitive ANNs).

78

My architecture thus addresses one of the key shortcomings of many current approaches to

time series learning: the need for an explicit, formal model of inputs from different modalities.

For example, the specialists at each leaf in the SM network might represent audio and infrared

sensors in a industrial or military monitoring system [SM93]. The SM network model and

learning algorithm, described in Chapter 4, capture this property by allocating different channels

of input (collected in each complex input attribute) to every specialist. Other models that can be

represented by SM architecture are hierarchies of decision-making committees [Bi95].

I used both simple feedforward ANNs (multilayer perceptrons) and simple recurrent networks

(SRNs), both trained by gradient learning (error backpropagation). For more information on

SRNs, also known as autoregressive models or exponential trace memories, I refer the interested

reader to [MMR97] and [PL98]. Recurrent feedback allows temporal information to be extracted

from different subsets of a multichannel time series. More important, it allows this information to

be recombined (i.e., a composite or higher-level classifier to be learned), even when the temporal

attributes do not “line up” perfectly. I tested the Elman, Jordan, and input recurrent varieties of

SRNs [El90, PL98], and found the input recurrent networks to achieve higher performance

(accuracy and convergence rate) for exponentially coded time series, both alone and as part of the

specialist-moderator networks.

In time series learning, preprocessing of input signals is the typical method of reformulating

the input attributes [Ha94]. The experimental learning task was classification of (preprocessed)

digital audio sequences. For this purpose, a database of 89 stylized musical tunes was

synthesized, each containing 3-6 segments or “words” from an identifiable class (e.g., falling

tone, rising tone, flat tone, etc.) delimited by silence (2-5 gaps). The tunes belong to 16

predetermined overall concept classes, factorizable into 4 equivalence classes offrequencyand 4

of rhythm. Figure 15 shows this factorization. The learning task was to identify the overall

concept class (among 16), given a preprocessed, multichannel frequency and rhythm signal. The

training data consists of 73 tunes, with one randomly selected exemplar of each class being held

out to obtain 16 cross-validation tunes. The numbers inside each circle in Figure 15 show the

number of members from the overall 89-tune data set that belong to each class.

The input data was generated as follows. First, digital audio was recorded of the tunes being

played by one of the authors. These samples were preprocessed using a simple autocorrelation

79

technique to find a coarse estimate of thefundamental frequency[BMB93]. This signal was used

to produce thefrequency component, an exponential trace of a tune over 7 input channels

(essentially, a 7-note scale). The other group of input attributes is therhythm component,

containing 2 channels: the position in the tune (i.e., a time parameter ranging from 1 to 11) and a

binary sound-gap indicator.

Figure 15 depicts non-modular and specialist-moderator architectures for learning the musical

tune classification database. The non-modular network receives all 9 channels of input and is

trained using the overall concept class. The first-level (leaf) networks in the specialist-moderator

network receivespecializedinputs: the frequency component only or the rhythm component only.

The concatenation of frequency and rhythm components (i.e., the entire input) is given as input to

the moderator network, and the target of the moderator network is the Cartesian product of its

children's targets. Learning performance for these alternative network organizations is shown in

Figure 16. Appendix A.3 documents some combinatorial properties relevant to this construction

and this experiment.

7F

2R

ANN
(Feedforward

or Simple
Recurrent
Network)

16C

Simple (Non-Modular)
Artificial Neural Network

Specialist-Moderator
Network

F2

F1

F3

F4

R4

3

6

6

6

R1

5

7

6

4

R2

6

4

7

6

R3

6

7

4

6

Problem Factorization by
Frequency and Rhythm

7F 4IF

2R Rhythm

Frequency

7F °°°° 2R

16C = 4IF × 4IR

4IR

Moderator

Figure 15. Organization of the musical tune classification experiment

80

0

10

20

30

40

50

60

70

80

90

100

Percent
Correct

Sim
ple

FF

Freque
nc

y FF

Rhy
thm

FF

Mod
erator

FF

Sim
ple

IR

Frequ
enc

y IR

Rhy
thm

IR

Modera
tor

IR

HME, 4
leave

s

HME, 8
leave

s

Network Type

Performance of Non-Modular, Specialist-Moderator
Networks, and HME on Musical Tune Classification

Training

CV

Figure 16. Performance (classification accuracy) of learning systems

on the musical tune classification problem

5.2 Metric-Based Model Selection

This section presents results that illustrate the benefits of metric-based for model selection

and compare with to other quantitative methods (such as naïve enumeration of learning

configurations).

5.2.1 Selecting Learning Architectures

Figure 17 depicts a plot of the TDNN architectural metric curve for a series of 10000

independent, identically distributed, Uniform (0, 2) random variables. I use a discrete uniform

distribution as a baseline because the unconditioned entropy is maximized. The variables are iid

(an “order-0 Markov process”) to provide a baseline for memory forms in time series learning.

The definition of, and rationale for, the convolutional-code based metric for TDNNs, SRNs

(specifically, input recurrent networks), and Gamma memories is given in Appendix C. As we

would expect, the conditional entropy drops to nil as the number of delay lines goes to about 11

(i.e., with a window “depth” of 11, any sequence can be uniquely identified – note that this does

not tell us what the generalization capability will be). The value for 0 delay lines is about lg(3) *

10000, also as expected.

81

5.2.2 Selecting Mixture Models

Figure 18 shows the classification accuracy in percent for moderator output for the concept:

{ }1,0

21

21

1

≡∈

⊕⊕⊕=
×××=

= ∏
=

H

Y

ij

iniii

k

k

i
i

X

XXXY

YYY

Y

i
ÿ

ÿ

documented in Appendix D. All mixture models are trained using 24 hidden units,

distributed across all specialists and moderators. When used as a heuristic evaluation function for

partition search, the HME metric documented in Appendix C finds the best partition for the 5-

attribute problem (shown below) as well as 6, 7, and 8, with no backtracking, and indicates that

an HME-type mixture should be used.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 17. TDNN architectural metric for 10000 i.i.d. Uniform (0, 2) data points

82

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Fused
Max

Fused
Min

Fused
Average

Figure 18. Min-max-average plot of classification accuracy

for a partitioned, 5-attribute modular parity problem

5.3 Partition Search

This section presents the results for the attribute partition search algorithm given in Chapter 2

and for which an evaluation function is derived in Appendix C.

5.3.1 Improvements in Classification Accuracy

This section documents improvements in classification accuracy as achieved by attribute

partitioning. Figure 19 shows how the optimal partition {{1,2,3}{4,5}} for the concept:

parity(x1, x2, x3) × parity(x4, x5)

as defined in Section 5.2.2 achieves the best specialist performance for any size-2 partition.

83

0

10

20

30

40

50

60

70

80

90

Percent
Accuracy

Partition

Mean Classification Accuracy of Specialists for a
Partitioned 5-Attribute Modular Parity Problem

Series1 Series2
Series3 Series4
Series5 Series6
Series7 Series8
Series9 Series10
Series11 Series12
Series13 Series14
Series15 Series16
Series17 Series18
Series19 Series20
Series21 Series22
Series23 Series24
Series25 Series26
Series27 Series28
Series29 Series30
Series31 Series32
Series33 Series34
Series35 Series36
Series37 Series38
Series39 Series40
Series41 Series42
Series43 Series44
Series45 Series46
Series47 Series48
Series49 Series50
Series51 Series52

Figure 19. Specialist performance for all possible partitions of a 5-set

0

10

20

30

40

50

60

70

80

90

100

Percent
Accuracy

Partition

Mean Classification Accuracy of Moderators for a
Partitioned 5-Attribute Modular Parity Problem

Series1 Series2
Series3 Series4
Series5 Series6
Series7 Series8
Series9 Series10
Series11 Series12
Series13 Series14
Series15 Series16
Series17 Series18
Series19 Series20
Series21 Series22
Series23 Series24
Series25 Series26
Series27 Series28
Series29 Series30
Series31 Series32
Series33 Series34
Series35 Series36
Series37 Series38
Series39 Series40
Series41 Series42
Series43 Series44
Series45 Series46
Series47 Series48
Series49 Series50
Series51 Series52

Figure 20. Moderator performance for all possible partitions of a 5-set

84

Figure 20 shows how this allows it to achieve the best moderator performance overall.

Empirically, “good splits” (especially descendants and ancestors of the optimal one, i.e., members

of its schema [BGH89]) tend to perform well.

5.3.2 Improvements in Learning Efficiency

n 2n Bn Partitioning

Runtime (s)

MMI

Runtime (s)

FS

Runtime (s)

Peak MMI

Memory (KB)

Peak FS

Memory (KB)

0 1 1 1 1 1 1040 1040

1 2 1 1 1 1 1050 1040

2 4 2 1 1 1 1060 1040

3 8 5 2 1 1 1070 1040

4 16 15 4 1 1 1080 1040

5 32 52 16 1 2 1100 1100

6 64 203 77 4 5 2200 1200

7 128 877 391 10 21 8600 1600

8 256 4140 2154 28 ~40 31000 2800

9 512 21147 13454 87 ~80 91600 20000

10 1024 115975 98108 281 ~1500 374000 ~300000

Table 4. Empirical performance statistics (time/space complexity)

for metrics and (naïve) partition search

Table 4 shows the problem size, runtime, and memory consumption for the distributional

metrics, documented in Appendix C.2.1. The MMI metric is the evaluation function for partition

search. These values are graphed in Figure 21.

85

1

10

100

1000

10000

100000

1E+06

1E+07

1E+08
1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

1E+19

1E+20

1E+21

1E+22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n

2**n

10**n

B_n

Naïve Partitioning
Runtime (s)

MMI Runtime (s)

FS Runtime (s)

Figure 21. Logarithmic graph of problem size and running time

(attribute parttitioning and distributional metrics)

5.4 Integrated Learning System: Comparisons

This section concludes the presentation of experimental results with comparisons to existing

inductive learning systems, traditional regression-based methods as adapted to time series

prediction, and non-modular probabilistic networks (both atemporal and ARIMA-type ANNs).

5.4.1 Other Inducers

Table 5 lists performance statistics (classification accuracy and running time) using atemporal

inducers such asID3, C5.0, Naïve Bayes,IBL, and PEBLSon the corn condition monitoring

problem (babycorn data set) described in Section 5.1.1. The darkly-shaded rows in Table 5

denote partitioning mixtures, including themulti-strategy HME model that I used (this

corresponds to the “HME, gradient” entry in Table 1 of Chapter 3). The lightly-shaded rows

denote aggregating mixtures (in this case, bagged versions of the atemporal inducers).

86

Classification Accuracy (%)

Training Cross Validation

Inducer Min Mean Max StdDev Min Mean Max StdDev

ID3 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51

ID3, bagged 99.7 99.9 100.0 0.15 30.3 58.2 88.2 18.30

ID3, boosted 100.0 100.0 100.0 0.00 33.3 55.6 82.4 17.51

C5.0 90.7 91.7 93.2 0.75 38.7 58.7 81.8 14.30

C5.0, boosted 98.8 99.7 100.0 0.40 38.7 60.9 79.4 13.06

IBL 93.4 94.7 96.7 0.80 33.3 59.2 73.5 11.91

Discrete

Naïve-Bayes
74.0 77.4 81.8 2.16 38.7 68.4 96.7 22.85

DNB, bagged 73.4 76.8 80.9 2.35 38.7 70.8 93.9 19.63

DNB, boosted 76.7 78.7 81.5 1.83 38.7 69.7 96.7 21.92

PEBLS 91.6 94.2 96.4 1.68 27.3 58.1 76.5 14.24

IR Expert 91.0 93.7 97.2 1.67 41.9 72.8 94.1 20.45

TDNN Expert 91.9 96.8 99.7 2.02 48.4 74.8 93.8 14.40

MS-HME 98.2 98.9 100.0 0.54 52.9 79.0 96.9 14.99

Table 5. Performance of a HME-type mixture model compared with compared with that of

other inducers on the crop condition monitoring problem

87

Classification Accuracy (%)

Training Cross Validation

Inducer Min Mean StdDev Max Min Mean StdDev Max

ID3 99.4 99.4 0.09 99.6 46.6 63.4 5.67 73.2

ID3, bagged 99.4 99.4 0.09 99.6 48.6 63.4 5.55 74.0

ID3, boosted 99.4 99.4 0.09 99.6 53.4 66.6 4.85 83.6

C5.0 95.0 95.8 0.64 96.3 67.1 77.1 3.41 84.9

C5.0, boosted 94.4 98.9 1.11 99.6 57.5 77.5 5.57 89

IBL 92.7 94.0 1.02 95.6 41.1 52.7 4.88 62.3

Discrete

Naïve-Bayes
93.8 95.6 0.78 96.3 41.1 59.6 4.79 67.1

DNB, bagged 93.4 94.6 0.79 96.3 47.9 60.8 4.19 67.1

DNB, boosted 93.8 94.4 0.47 96.5 45.2 58.3 5.34 69.2

PEBLS 72.6 76.8 1.67 84.2 30.8 42.5 4.71 56.8

SM net, FF 74.9 74.9 0.00 74.9 60.2 60.2 0.00 60.2

SM net, IR 100.0 100.0 0.00 100.0 81.3 81.3 0.00 81.3

Table 6. Performance of an SM network mixture model compared with that of other

inducers on the musical tune classification problem

Table 6 lists performance statistics for the musical tune classification problem (S4 data set)

described in Section 5.1.2. The non-ANN inducers tested are all part of theMLC++ package

[KSD96].

5.4.2 Non-Modular Probabilistic Networks

This section summarizes the performance of the modified hierarchical mixture (specialist-

moderator networks of feedforward and input recurrent ANNs) used on the time series

classification problem as described in Section 5.1.2, as compared to non-modular regression

models (feedforward and input recurrent ANNs trained by delta rule).

88

Network type Size (units per layer) Number of weights Max epochs

Simple (overall) 9-48-16 1200 4000

Rhythm Specialist 9-16-48 208 2000

Frequency Specialist 7-16-4 176 2000

Moderator (overall) 17-24-16 792 2000

Table 7. Design of non-modular and specialist-moderator ANNs

Table 7 shows the respective sizes of a feedforward ANN (see Figure 15) and the

components of a specialist-moderator network of feedforward ANNs, along with the number of

training cycles (epochs) allocated to each network. Note that the total number of learning weights

is about the same for the simple network and the entire specialist-moderator network (the last

three rows). Note also that the overall computational cost (as opposed to wall clock time) is

equalized, because the specialists can be trained concurrently. The same network sizes and

epochs were allocated for the SRNs and specialist-moderator networks of SRNs.

Design Network

Type

Training

MSE

Training Accuracy CV

MSE

CV

Accuracy

Feedfwd. Simple 0.0575 344/589 (58.40%) 0.0728 67/128 (52.44%)

Feedfwd. Rhythm 0.0716 534/589 (90.66%) 0.1530 104/128 (81.25%)

Feedfwd. Frequency 0.0001 589/589 (100.0%) 0.0033 128/128 (100.0%)

Feedfwd. Moderator 0.0323 441/589 (74.87%) 0.0554 77/128 (60.16%)

Input rec. Simple 0.0167 566/589 (96.10%) 0.0717 83/128 (64.84%)

Input rec. Rhythm 0.0653 565/589 (95.93%) 0.1912 107/128 (83.59%)

Input rec. Frequency 0.0015 589/589 (100.0%) 0.0031 128/128 (100.0%)

Input rec. Moderator 0.0013 589/589 (100.0%) 0.0425 104/128 (81.25%)

Table 8. Performance of non-modular and specialist-moderator networks.

Table 8 shows the performance of the non-modular (simple feedforward and input recurrent)

ANNs compared to their specialist-moderator counterparts. Each tune is coded using between 5

and 11 exemplars, for a total of 589 training and 128 cross validation exemplars (73 training and

8 Even though cluster definition (to obtain the intermediate concepts, or classification targets, for the
rhythm specialist) was performed using only 2 attributes, experiments with attribute subset selection (in
addition to partitioning) showed a slight increase in performance as “frequency-relevant” attributes were
added. Therefore, all 9 attributes were used as input (insupervised mode only) to the rhythm specialists.

89

16 cross validation tunes). The italicized networks have 16 targets; the specialists, 4 each.

Prediction accuracy is measured in the number of individual exemplars classified correctly (in a

1-of-4 or 1-of-16 coding [Sa98]). Significant overtraining was detected only in the frequency

specialists. This did not, however, affect classification accuracy for my data set. The results

illustrate that input recurrent networks (simple, specialist, and moderator) are more capable of

generalizing over the temporally coded music data than are feedforward ANNs. The advantage

of the specialist-moderator architecture is demonstrated by the higher accuracy of the moderator

test predictions (100% on the training set and 81.25% or 15 of 16 tunes on the cross validation

set, the highest among the learning algorithms tested).

Network Type Levels Weights Expert Fusion Epochs

HME, 4 leaves 2 1296 GLIM (tanh) GLIM (linear) 4000

HME, 8 leaves 3 1332 GLIM (tanh) GLIM (linear) 4000

S-M net, 2 leaves 1 1176 FF or IR FF or IR 4000

Table 9. Design parameters for HME and specialist-moderator networks.

Table 9 summarizes the topology of two hierarchical mixtures of experts I constructed for the

musical tune classification problem. Each is designed to have approximately the same network

complexity (number of learning parameters, i.e., expert and gating weights) as the specialist-

moderator network (which is shown in Figure 15 and is similar in type to those documented in

Chapters 3 and 4). The table also indicates what output nonlinearities are used. The HME design

above is consistent with that described by Jordan and Jacobs for regression problems. For

purposes of standardized comparison, however, I use a gradient learning algorithm (the same as

in all of the specialist-moderator networks) instead of the EM algorithm withiteratively

reweighted least squares(IRLS) used in Jordan and Jacobs's HME implementation [JJ94].

Design Training MSE Training Acc. CV MSE CV Accuracy

HME, 4 leaves 0.0576 387/589 (65.71%) 0.0771 58/128 (45.31%)

HME, 8 leaves 0.0395 468/589 (79.46%) 0.0610 77/128 (60.16%)

S-M net, FF 0.0323 441/589 (74.87%) 0.0554 77/128 (60.16%)

S-M net, IR 0.0013 589/589 (100.0%) 0.0425 104/128 (81.25%)

Table 10. Performance of HME and specialist-moderator networks.

90

As Table 10 shows, the HME algorithm with 8 leaves outperforms the version with 4 and is

comparable to the specialist-moderator network of feedforward networks. It is, however,

outperformed by the specialist-moderator network of input recurrent networks. This is significant

because incorporating recurrence into HME requires nontrivial modifications to the algorithm.

Equally important, I expect that a hierarchy of input recurrent expert and gating networks, with

identical outputs and the original input presented to each, would incur excessive overhead due to

its complexity. Given my uniform complexity restrictions, it would then be impractical to build a

3-level or even 2-level tree.

5.4.3 Knowledge Based Decomposition

In the musical tune classification problem, the intermediate targets are equivalence classes IF

= { F1, F2, F3, F4 } and IR = { R1, R2, R3, R4 }. This 4-by-4 factorization was discovered using

competitive clustering by Gaussian radial-basis functions (RBFs) [Ha94, RH98]. In this

experiment, the frequency and rhythm partitioning ofinput is self-evident in the signal processing

construction, so thesubdivision of inputis known (note, however, that the intermediate targets are

not known in advance). When the input subdivision is also unknown, automaticsubset selection

methods can be used to automatically determine which inputs arerelevant to a particular

specialist [KJ97].

91

6. Analysis and Conclusions

This dissertation has presented: a wrapper system for decomposition of inductive time series

learning tasks by attribute partitioning; a metric-based procedure for coarse-grained selection of

multiple models for subproblems, and a hierarchical mixture model for integration of trained

submodels. The overall product is an integrated, multi-strategy learning system for

decomposable time series, which combines unsupervised learning (constructive induction),

supervised learning (using temporal, probabilistic networks), and model selection. This chapter

reviews the system and assesses its theoretical and practical relevance. First, I characterize the

attribute partitioning-based decomposition system as awrapperfor supervised inductive learning.

I review the benefits for time series learning as documented in Chapter 5, and outline some

promising topics of continued research in this direction. Next, I evaluate the empirical results on

attribute partitioning, and contrast the improvements in classification accuracy with their

computational costs. I discuss the techniques, such as heuristic search, that I have applied to

make the most of this tradeoff; the obstacles that remain; and future work that addresses some of

these obstacles. I then survey the results regarding the use of multiple models in time series

learning – namely, the effectiveness of: subproblem definition, metric-based model selection, and

hierarchical mixtures of temporal probabilistic networks. Finally, I document the ways in which

my approach has been applied to real time series, and may be of future use in analysis of large-

scale, heterogeneous time series.

6.1 Interpretation of Empirical Results

This section analyzes the experimental results reported in the previous chapters, especially

Chapter 5. It begins with a discussion of the main findings and their ramifications, continues with

an account of the design choices and tradeoffs incurred, and concludes with a brief investigation

into the general properties of the test beds used in this dissertation.

6.1.1 Scientific Significance

The experimental results described in Chapter 5 bear out the following hypotheses:

1. [Chapter 2] Decomposition of learning tasks by attribute partitioning can be useful in

reducing variance when computational resources are limited (i.e., a consistent bound is

imposed on network complexity and time until convergence, or – more accurately – both).

92

2. Conversely, when desired classification accuracy is specified, this type of decomposition can

reduce the complexity of the model needed to achieve the target.

3. [Chapter 2] Using exhaustive enumeration of partitions, the optimal partition (with respect

to multiple models) can be identified for a particular learning model using statistically

sufficient number of tests.In practice, this is typically not a very high number, but the

number of partitions grows superexponentially as a function of the number of attributes.

4. [Chapter 3] This method can be extended to testing all configurations of the learning models

in a multi-strategy learning system.In practice, this is typically a very high number not only

because of the moderately large number of configurations involved for a single problem

definition, but because the growth of configurations is exponential in the number of subsets

of the partition.

5. [Chapter 4] Adaptation of HME to partitioned concept learning problems is effective for

decomposable time series (such as the corn condition monitoring test bed); it achieves data

fusion through specialization of expert networks to specific types of embedded temporal

patterns, or memory forms.

6. [Chapter 4] SM networks can be used as an alternative hierarchical mixture model when

there is a high degree of factorial structure in the learning problem (such as in the musical

tune classification test bed).

7. [Chapter 4] Hierarchical mixture models, as applied in this system, support multi-strategy

learning from time series, using multiple types of temporal probabilistic networks.

8. [Chapter 2] Partition evaluation can be made much more efficient by casting it as a state

space search problem and using a heuristic evaluation function.This allows data sets with

many more input attributes to be decomposed, although complexity is reduced only to an

exponential function of the number of attributes in the worst-case.

9. [Chapter 3] The architectural metrics are positively correlated with learning performance by

a particular configuration of learning architecture (for a learning problem defined on a

particular subset of a time series).This makes them approximate indicators of the suitability

93

of the corresponding architecture and the assumption that the learning problem adheres to its

memory form. Thus, architectural metrics may be used for partial model selection.

10. [Chapter 3] The distributional metrics for hierarchical mixture models are positively

correlated with learning performance by a particular learning method (for a learning

problem defined on a particular partitioning of a time series).This makes them approximate

indicators of the suitability of the corresponding mixture model and the assumption that the

learning problem adheres to its characteristics (with respect to interaction among

subproblems). Thus, distributional metrics may be used for partial model selection.

The findings in this list support the design philosophy thatmodularlearning [JJ94, RH98] is

beneficial when there exists a hierarchical decomposition that reduces variance without incurring

excessive complexity. In the specialist-moderator framework, for instance, this means that the

problem factorization is highly efficient. In time series classification test beds such as the

musical tune classification problem, the factorization is optimal, and the specialist-moderator

framework is shown to outperform other learning architectures of comparable complexity. The

results in Section 5.4 also show that it is sometimes preferable to use specialist-moderator

networks for data fusion instead of mixture models where all complex input attributes and

intermediate targets are identical. This case occurs when: some decomposition of a learning task

contains subproblemsthat are easier to solve in isolation(all other things being equal); these

subproblems can be extracted through attribute partitioning and cluster definition; and the

intermediate outputs can be recombined with a hierarchical mixture model. An important part of

subproblem definition is the model selection step, which associates the “input-output”

specification9 with a mixture model type and a learning architecture for the subproblem. Chapter

5 gives examples heterogeneous time series for which this step can be completed manually or

automatically.

6.1.2 Tradeoffs

A number of important performance tradeoffs were assessed in this dissertation. These

include:

9 Such a specification fully defines the instance space, or concept language, but is only a partial definition
of the hypothesis language.

94

1. Bias/variance decomposition in terms of mixture modeling [GBD92, Fr98, Ro98]. The

general design philosophy in attribute-driven problem decomposition is that, for

heterogeneous time series, it is neither appropriate to use a “monolithic” model nor a

traditional hierarchical mixture model. By “monolithic”, I mean a non-modular learning

model that is highly flexible but typically less tractable than one that employs some model

selection (either adaptation or coarse-grainedtechnique selection[EVA98]). Section 3.1.1

discusses this issue in more detail. By “traditional” mixture models, I mean those that adapt

their components (experts or specialists) as part of the learning algorithmprimarily as a

substitute for explicit decomposition[Ro98]. Some mixture models, such as HME, are used

in both supervised modes and with some cluster definition [Ha94, Am95, Bi95].

2. Efficiency versus accuracy in attribute partitioning-based decomposition. Optimal partitions

are neither necessarily unique, nor does the state space always exhibitlocality very well

[Go89, RS90, Gi96]. One interesting line of future research is to apply genetic search

[BGH89, Go89, LY93] to the attribute partitioning problem. This is a high-level change-of-

representation problem that eases the bias/variance tradeoff at the level of supervised

learning.

3. Efficiency versus accuracy in metric-based model selection. A highly accurate, but also very

expensive, approach, is to try every configuration of model available [Gr92, Ko95]. Even

when only a small or moderate constant number of configurations is available, problem

decomposition confounds this approach because the interactions among subproblems are

difficult to predict. Problems with such methods have been documented in other technique

selection applications, such as compression of heterogeneous files [HZ95]. The alternatives

are to: limit partitioning to a small number of subsets (because of the exponential growth in

the number of configurations that must be considered); make biasing assumptions about

subproblem interaction; or use a prescriptive metric to approximate or predict performance as

is done here.

6.1.3 Representativeness of Test Beds

Of additional interest is the question: to what degree are the real and synthetic test beds used

in experiments (and for high-level calibration of the model) representative of all time series?

95

Properties of interest that are captured by all test beds or represented by individuals are:

1. Heterogeneity.All of the real-world time series are heterogeneous, but this is due to various

causes (multiple, interacting physical processes in the crop monitoring test bed; signal

preprocessing in the musical tune classification test bed). Some of the synthetic data sets

(such as the partitioning test bed) are heterogeneous, some (such as the calibration sets for

architectural metrics) homogeneous.

2. Decomposability. All of the real-world test beds are decomposableto some degreeby

attribute partitioning. An interesting topic of future research is to consider alternative

methods for problem decomposition (such as knowledge-based constructive induction [Gu91,

Do96]). All heterogeneous, synthetic time series have decomposable problem definitions.

3. Mixtures. Each type of mixture model (with various prescribed training algorithms) is

represented by one real-world data set and by several synthetic data sets.

4. Embedded temporal patterns. All of the memory formsin my implementation of the database

of learning techniques are represented by various subproblems.

6.2 Synopsis of Novel Contributions

This section presents a synopsis of contributions to the theory of multi-strategy machine

learning and its application time series analysis.

6.2.1 Advances in Quantitative Theory

The main contribution of this dissertation to the theory ofintegrative methodsfor supervised

inductive learning (cf. [Ko95, KJ97], as depicted in Figure 22) is a new wrapper system for

probabilistic networks (as depicted in Figure 23). This methodology is not specific to time series.

96

Attribute Selection Search

Attribute Evaluation

Performance
Estimation

Induction Algorithm

Attribute Set Hypothesis

Training
Set

Test Set

Induction
Algorithm

Final
Evaluation

Training
Set

Attribute Set
Selected

Attribute Set

Estimated
Accuracy

Figure 22. Wrapper systems for supervised inductive learning [Ko95, KJ97].

Attribute Partition Search

Partition Evaluation

Performance
Estimation

Model Selection
(Architectures and Methods)

Attribute
Partition

Model
Specification
(“Composite”)

Training
Set

Test Set

Induction
Techniques

Overall
Evaluation

Training
Set

Attribute
Partition Selected

Attribute
Partition

Estimated
Accuracy

Architectural
Metrics

Distributional
Metrics

PartitionSubset Metrics

Probabilistic
Network

Probabilistic
Network

Metrics

Figure 23. New wrapper system based on attribute partition search and

metric-guided model selection.

97

Constructive
Induction

(x, y)

Constructive
Induction

(x, y)

Cluster
Definition

(x’, y’)

Feature
Construction

x’

Cluster
Definition

((x1’, y1’), …, (xn’, yn’))

Attribute
Partitioning

(x1’, … xn’)

Figure 24. Traditional constructive induction and its adaptation to

systematic (attribute-driven) problem decomposition.

A second major contribution of this work is the adaptation of constructive induction to

problem decomposition (as depicted in Figure 24 and discussed in Section 2.2). Again, this

extension of previous work is not specific to time series.

6.2.2 Summary of Ramifications and Significance

Heterogeneous time series learning problems are abundant in applications such as multimodal

diagnosis and monitoring [BSCC89, HLB+96, HGL+98], multimodal sensor integration [SM93,

Se98], multimodal human-computer interaction [Hu98], integrative knowledge based simulation

[WS97], and multiagent problem solving [GD88]. This dissertation focuses on the first three

categories of problems, though it may extend to certain problems in the last two categories.

Multimodality is a general property of data such that it is generated by multiple sources. It

may originate from the use ofmultiple modelsin diagnosis [WCB86, Mi93], hybrid temporal and

atemporal inference [Sh95], qualitative and numerical data [He91, Gr98], integration of sensors

98

and laboratory measurements with subjective evaluations [BSCC89, RN95, Gr98], and other

similar phenomena. For example, sensors (artificial or natural) may be tuned to or configured for

differentmodes of perception, in which case the tasks of learning, representation, and integration

are calledmultisensory[SM93]. Multisensory integration is a central problem in design of

intelligent alarms [HLB+96], where false positives and localization error may be reduced by

combining multiple percepts. This phenomenon has been observed and studied in neurobiology

[SM93, Se98] and is beginning to be investigated through simulation in computational

neuroscience [Se98]. Finally, multimodality in human-computer intelligent interaction is a

natural consequence of the modes of communication used by humans: speech, handwriting,

gestures, and facial expression, among others. For example, lipreading as an enhancement to

continuous speech recognition from audio is a topic of current research [Hu98].

In nearly all cases, multimodal time series are inherently heterogeneous. That is, because

multiple, different sourcesgeneratedthe data, there are typically different temporal patterns

embedded in this data. For a given learning problem as defined on such time series, these pattern

types are often recognizable. If so, they may be exploited by separation of the problem to obtain

subproblems – in which case the learning problem is referred to asdecomposable. The objective

is to find homogeneoustime series, those with only one dominant embedded temporal pattern,

typically originating from a single input source. This is where attribute partitioning methods

may be useful; they decompose time series data into homogeneous parts, along groups of

attributes.

Identifying homogeneous subsets of a time series data set is only a partial solution. When

such partitions are achievable, it is still necessary in most cases to select a suitable model

(hypothesis language) foreachsubset. In real-world heterogeneous time series, the description of

the suitable model tends to vary along rather coarse parameters, such as the degree of

autoregressive versus moving average characteristics [Mo94, Ch96, MMR97]. This is borne out

by experimental evidence, as documented in Chapter 5.

It is typically feasible to combine the subset selection and model selection methods presented

in this research whenever three conditions are met. All three of these conditions are attainable by

refinement of metrics, compilation of training corpora for metrics, mixture modeling, clustering,

and preprocessing of attributes, in roughly descending order of importance. This research is

99

foremost concerned with the first two issues and to a limited extent with the remaining three, but

all are addressed.

First, the training data must be sufficiently homogeneouswith respect to the set of identifiable

high-level temporal patternsfor a “dominant pattern type” to be unequivocally indicated. This is

an issue of metric design and population of the database of learning techniques. Second, there

nust be sufficientrepresentative datafor training the model selection mechanism based on these

patterns. This is an issue of corpus design and metric normalization. Third, a supplementary

unsupervised learning mechanism is required for determination of intermediate targetsgivenan

attribute partition, and a data fusion mechanism is required for recombining trained models for

each component of the partition. This is somewhat data-driven, and is addressed by clustering

and mixture models, respectively.

The key contribution of subset partitioning as applied to heterogeneous time series learning is

its capability to effectively decompose learning tasks. The quality of decompositions depends

primarily on its homogeneity. The benefits of a homogeneous partition are threefold: first, it is

easier to fit the most appropriate model to each subtask; second, it automatically groups attributes

into the appropriate subsets; third, the data fusion problem is simplified (i.e., there is less work for

the mixture model to perform).

Fitting the most appropriate model to each subtask tends to reduce network complexity and

classification error, as is demonstrated in Chapter 5. It also provides support for multi-strategy

learning methods [HGL+98]. Grouping of attributes is a localized form ofrelevance

determination. That is, the attributes are adjudged to “belong together” if and only if they are

mutually cohesive and relevant to their common intermediate target,and if their grouping entails

a tractable data fusion problem (as documented in Appendix D.2.1). The last benefit is a

consequence of a criterion that minimizes theinefficiency of a partitioning, as described in

Section 2.4 and in Chapter 4.

Heterogeneity is especially salient in time series learning because:

1. Many problems that can be cast as time series analysis involve learning from multiple sources

of observations. This includes diagnosis and monitoring based on multiple models,

multisensor integration, and multimodal HCI.

100

2. The performance element for an intelligent time series analysis system often necessitates

models for different aspects of change among input variables [Do96, Io96].

3. Many time series learning problems, such as crop monitoring, also possess a spatial aspect.

Thesespatiotemporallearning problems may exhibit heterogeneity because of the location of

sensors. Related problems include: adaptive remote sensing, mobile robotics, and distributed

agents including some Internet agents [Sa97].

6.3 Future Work

Subsequent work following this dissertation will examine some potential solutions to some

problems that it has recognized, but not directly addressed. These include: further improvement

of performance in the real-world test beds studied; extension of the lessons learned and

performance gains achieved for these test beds, to larger-scale intelligent systems applications;

and generalization of the results from synthetic and real data sets to other domains. This section

presents some of the feasible research programs that arise as a result of the findings in this

dissertation.

6.3.1 Improving Performance in Test Bed Domains

I have presented an algorithm for combining data from multiple input sources (sensors,

specialists with different concentrations, etc.) and a modular, recurrent, artificial neural network

for time series learning. This method can be extended beyond probabilistic networks, but for

clarity of exposition and experimental standardization, I have focused on recurrent ANNs as the

characteristic architecture for time series learning. Fusion of time series classifiers showcases the

strengths of both mixture models because there are manypreprocessing methodsthat produce

reformulated input. The characteristic applications in this area are monitoring, prediction, and

control− problems which often involve continuous output. For clarity, however, I have focused

on discrete classification.

6.3.2 Extended Applications

One example of an extended learning test bed, which is related to the wide-area corn

condition monitoring test bed that I developed, is the analysis of large geospatial databases for

precision agriculture. A wealth of remote sensing, simulation, laboratory, and historical data has

recently become available for computational studies. This data is collected at a much finer level

of spatial granularity than that used in my pilot experiment for condition monitoring. One

101

important use of this data is the generation ofspatiotemporal statistics[HR98a], approximated

variables mapped over space and time, such as soil fertility, plant available water, and expected

yield. Estimation of spatiotemporal statistics for agricultural applications varies greatly in

difficulty, but can nearly always be enhanced using large geospatial databases.

Database Name Database Type Temporal
Granularity
(days)

Spatial
Granularity
(m2)

Data Points
Per Year10

Soil samples Map 1.40×××× 101 2.0×××× 103 2 ×××× 104

Elevation11 Map 2.52× 102 1.0× 101 3 × 105

Aerial image Map/Sensor 7.00× 100 1.0× 10-2 9 × 109

Yield11 Map/Sensor 2.52× 102 2.0× 102 1 × 104

Near infrared Map/Sensor 1.40× 101 1.0× 100 5 × 107

Soil types Map/Computed 1.40× 101 2.0× 102 2 × 105

Soil fertility Map/Computed 1.40× 101 1.0× 101 5 × 106

Plant-available
moisture

Map/Computed 1.00× 100 1.0× 100 7 × 108

Vegetative
index11

Map/Computed 7.00× 100 1.0× 100 9 × 107

Nutrient uptake Map/Simulation 1.00× 100 1.0× 100 7 × 108

Corn growth Map/Simulation 1.00× 100 1.0× 100 7 × 108

Soybean growth Map/Simulation1.00× 100 1.0× 100 7 × 108

Planting density Map/Historical 2.52× 102 1.0× 102 3 × 104

Tillage Map/Historical 2.52× 102 1.0× 102 3 × 104

Fertilizer
Application

Map/Historical 1.26 ×××× 102 1.0×××× 106 5 ×××× 100

Chemical
Application

Map/Historical 1.40 ×××× 101 1.0×××× 104 5 ×××× 103

Soil composition Map/Laboratory 1.40× 101 2.0× 103 2 × 104

Precipitation Sensor 1.10× 10-2 1.0× 106 6 × 104

Temperature Sensor 1.10× 10-2 1.0× 106 6 × 104

Evapo-
transpiration

Sensor 1.00× 100 1.0× 106 7 × 102

Solar radiation Sensor 1.00× 100 1.0× 106 7 × 102

Neutron
(moisture) probe

Sensor 1.40× 101 1.0× 104 5 × 103

Agronomic
Estimates

Historical 1.40× 101 1.0× 106 5 × 101

Pedology Laboratory 1.40× 101 2.0× 103 2 × 104

Table 11. Geospatial databases available for time series learning reseearch with

applications to large-scale precision agriculture.

10 Order-of-magnitude estimates, assuming data is collected over a 36-week season from a 2.59 km2 field.
11 Acquired through satellite triangulation (e.g., GPS) or very-high resolution satellite radiometry (e.g.,
NOAA-11).

102

Table 11 lists maps, sensor data, historical records, and laboratory data that is available to the

principal investigators through the Department of Crop Sciences, the Williams field (an

experimental field in East Central Illinois), and the Illinois State Water Survey in Champaign,

Illinois. The Williams field is situated on a 1-square-mile, or 2.59-square-kilometer, plot and is

co-managed by one of the principal investigators.

Map-referenced data may be produced using manual probing, remote sensing, application of

computational geometry algorithms, simulation [JK86], or records of crop management. Items

shown initalics are the result of computation-intensive analysis of measurements (from both on-

site and remote sensors). Items shown inboldfaceare typical quantities that arecommender(or

decision-support) system [RV97] can be used toprescribe, or recommend, based on other

spatiotemporal statistics from these databases.

6.3.3 Other Domains

An important topic that I continue to investigate is the process of automating task

decomposition for model selection. I have used similar learning architectures and algorithms for

each subproblem in our modular decomposition. I have shown how the quality of generalization

achieved by a mixture of classifiers can benefit from the ability to identify the “right tool” for

each job. The findings I report here, however, only demonstrate the improvement for a very

limited set of real-world problems, and a (relatively) small range of stochastic process models.

This needs to be greatly expanded (through collection of much more extensive corpora) to form

any definitive conclusions regarding the efficacy of the coarse-grained model selection approach.

The relation of model selection to attribute formation and data fusion in time series is an area of

continuing research [HR98a]. A key question I will continue to investigate is: how does attribute

partitioning-based decomposition supportrelevance determinationin a modular learning

architecture?

103

A. Combinatorial Analyses

This appendix briefly presents some illustrative combinatorial results and statistics that are

useful in benchmarking components of the learning system and assessing its computational

bottlenecks. The primary intractable problem (aside from the training algorithm in the actual

supervised learning phase) is attribute partition evaluation. Another important bottleneck is

evaluation of composites. Using the state space search formulation introduced in Chapter 2, I

show below that the asymptotic running time for partition evaluation is only improved from

superexponential to exponential. For attribute-driven problem decompositions, however, I argue

that this improvement is of practical significance. Using the metric-based model selection

algorithm introduced in Chapter 3, I show how significant savings can be attained, by using

approximations of model performance instead of exhaustively testing configurations.

1. Growth of Bn and S(n,2)

N Bn S(n,2)
1 1 0
2 2 1
3 5 3
4 15 7
5 52 15
6 203 31
7 877 63
8 4140 127
9 21147 255
10 115975 511
11 678950 1023
12 4213597 2047
13 2.76E+07 4095
14 1.91E+08 8191
15 1.38E+09 16383
16 1.05E+10 32767
17 8.29E+10 65535
18 6.82E+11 131071
19 5.83E+12 262142
20 5.17E+13 524287
25 4.64E+18 16777215
50 1.86E+47 5.63E+14
100 4.76E+115 6.34E+29
500 1.61E+843 1.64E+150
1000 − 5.36E+300

Table 12. Bell numbers and number of size-2 partitions as a function of set sizen.

104

Table 12 illustrates the growth of the Bell numbers as a function of the set size,n. As noted

in Chapter 2, the growth ofBn is ω(2n) andο(n!). This makes enumeration of all states in the

search space of partitions an infeasible prospect forn larger than about 20. Furthermore, direct

evaluation of each state requires several complete experiments (the alternative being to use

distributional metrics, as documented in Chapter 5).Eachof these must run for as long as it takes

the training algorithm to converge [Ne96, Hi98]. Finally, to gather enough data points (i.e.,

statistics on classification accuracy) to differentiate the confidence intervals for model

performance may actually require many experiments, if indeed it can be done at all [Gr92, Ko95].

I addressed each of these problems by casting partition evaluation as a heuristic search: (as

described in Chapter 2). The complexity is reduced to the maximum breadth (diameter) of the

state space. As for the heuristic evaluation function for evaluation of each state, I isolated this

subproblem (which is still essential to the success of partition search) and deferred it until the

model selection stage (as described in Section 2.4 and Chapter 3).

A limitation of simple heuristic search is that, in order to expand the “frontier” of vertices to

be visited (theOPEN list), all children of the current candidates (theCANDIDATESlist as it is

called in Section 2.2.1.2) must be evaluated [BF81, Wi92, RN95]. Unfortunately, this means that

in the first step of partition search, all of the size-2 partitions must be evaluated. The number of

such partitions isS(n, 2)= 2n-1 - 1. If the heuristic is accurate, this quantity tends to dominate the

number of partitions to be evaluated on subsequent iterations of an informed search algorithm (as

opposed to breadth-first search, for example). For example, observe that each size-3 partition

entails a size-2 split of one subset (of size at mostn – 1), and so on. Although a heuristic

evaluation function can be deceived, a good function will typically not have an expanding frontier

(i.e., expand more thanΘ(S(n, 2)) members before finding an optimal partition12). This can be

explicitly enforced by constraining theCANDIDATESlist to contain a constant-width set of

vertices, as in the case of beam search. Kohavi [Ko95, KJ97] uses a recency criterion for

termination (i.e., if theBESTvertex has not changed in a pre-set number of iterations, stop

searching – in this case, do not test any further subdivisions of the currentBESTpartition).

12 If the heuristic is admissible, this (locally) optimal solution is also the (global) optimum [Bo??].

Typically, however, we are dealing with neither an admissible heuristicnor one that is always close to h*;

nontrivial admissible heuristics are hard to keep close to the true value, and vice versa.

105

As Table 12 also shows, even the first layer of the state space (which must always be

expanded) grows exponentially. In practice, my system can handle at least twice as many

attributes using partition search as with attribute enumeration. Exponential running time means

partition search is swamped out at around 20 attributes on a fast desktop workstation, perhaps 50

for high-performance computers with the highest currently available throughput; by contrast, the

current limit is approximately 11 and 21 for naïve enumeration.

Partition
Number

Partition Members Partition
Number

Partition Members

1 1 2 3 4 5 27 1 5 2 4 3
2 1 2 3 4 5 28 1 5 2 3 4
3 2 1 3 4 5 29 1 2 3 4 5
4 3 1 2 4 5 30 1 2 4 3 5
5 4 1 2 3 5 31 1 2 5 3 4
6 5 1 2 3 4 32 1 2 3 4 5
7 1 2 3 4 5 33 1 2 4 3 5
8 1 3 2 4 5 34 1 2 5 3 4
9 1 4 2 3 5 35 1 3 5 2 4
10 1 5 2 3 4 36 1 3 4 2 5
11 2 3 1 4 5 37 1 4 5 2 3
12 2 4 1 3 5 38 1 2 3 4 5
13 2 5 1 3 4 39 1 2 3 5 4
14 3 5 1 2 4 40 1 2 4 5 3
15 3 4 1 2 5 41 1 2 3 4 5
16 4 5 1 2 3 42 1 2 3 4 5
17 1 2 3 4 5 43 1 3 2 4 5
18 1 2 3 5 4 44 1 4 2 3 5
19 1 2 3 4 5 45 1 5 2 3 4
20 1 3 2 4 5 46 1 2 3 4 5
21 1 3 2 5 4 47 1 2 4 3 5
22 1 3 2 4 5 48 1 2 5 3 4
23 1 4 2 3 5 49 1 2 3 4 5
24 1 4 2 5 3 50 1 2 3 5 4
25 1 4 2 3 5 51 1 2 3 4 5
26 1 5 2 3 4 52 1 2 3 4 5

Table 13. Partitions of a 5-attribute data set

Table 13 shows partitions of a 5-attribute data set.

2. Theoretical Speedup due to Prescriptive Metrics

The naïve method for selecting a learning technique from a database of learning combinations

is to test every configuration. This may, furthermore, involve multiple tests for each pair of

combinations in order to judge between them (cf. [Gr92], [Ko95], [KSD96]). Considering only

106

one combination at a time, the “try and see” method entails O((r • c) k) tests forr possible choices

of learning algorithm, possible choices,ca possible choices of training algorithm, andcm possible

choices of mixture model. In the current design,r = 3, ca = 3, cm= 2, andc = ca • cm = 6. Because

my experiments usually use only one type of training algorithm at a time (as opposed to using the

distributional metric to select it), we can suppose thatr = 3, ca = 1, cm= 2, andc = ca • cm = 2. For

a size-4 partition, however, this still means 64 = 1296 combinations.

More realistically, we can constrain the mixture model, training algorithm, or both to be a

function of an entire partition. Because the distributional metrics are computed over the entire

partition, this is a natural assumption. There will then be onlyc choices for learning methods, but

still rk for the learning architecture. The number of combinations to examine is then O(rk • c),

which, while significant smaller, is still a substantial number of experiments (34 • 2 = 162 in the

case of a size-4 partition).

If a 2-D lookup table is used, however, evaluation can be performed on rows and columns of

the table independently. This reduces the number of tests to O(k(r + ca + cm)), or 4 • (3 + 1 + 2) =

24. The empirical speedup is even more significant, if metric-based model selection is used,

because the time to evaluate a single configuration is typically much less than the convergence

time for that configuration (especially for MCMC methods [Ne96]). Thus, the organization of

learning architectures and methods into a database provides significant computational savings.

3. Factorization properties

Definition 1: A factorizationof a data setD under an output attributeblj (l ≥ 0) is the set of

equivalence classes of points inD distinguishable byblj.

For example, Figure 25 shows a factorization of a set of 15 points using two attributesbl-1,1

andbl-1,2. Each induces a factorization of size 3.bl1, their parent in the specialist-moderator tree,

induces a factorization of size 7 (because two of the intersections among equivalence classes of

the children are empty). This is efficient because 7 > 3 + 3.

Definition 2: An inefficient factorizationof D under a nonleaf attributeblj (l ≥ 1) is a factorization

whose size is less than or equal to the sum of its children's.

107

F1

F3

F2

R2

2

3

2

R3

1

2

R1

3

2

Figure 25. Hypothetical Factorization of a Data Set Using Two Attributes

Definition 3: A possible factorizationby blj (l ≥ 1) is one of the ljp2 thatblj can induce under an

arbitrary data setD, where ∏
=

−=
][

][
,1

jE

jSk
kllj

l

l

pp andp0j = O0j.

Lemma: The number of possible factorizations by a nonleaf output attributeblj (l ≥ 1) that are

inefficient is �
=

��
�

�
��
�

�
=

lj lj
s

i

p

i

bad
ljN

0

, where �
=

−=
][

][
,1

jE

jSk
kllj

l

l

ps .

Theorem: Let)1],[][(,1 ≥≤≤− ljEkjSf llkl be a child offlj and let klp ,12 − denote the number

of possible factorizations it induces.

0
2

lim
][,1][,1 ,,

=�
�
�

�
�
�
�

�
∞→∞→ −−

lj
jlEljlSl

p

bad
lj

pp

N
ÿ

Definition 4: An orthogonalfactorization ofD under a nonleaf outputblj (l ≥ 1) is one whose size

is equal to the product of the sizes of its children's.

108

Property 1: Among factorizations of a data set in any specialist-moderator decomposition,

factorization size is maximized in the orthogonal case.

For purposes of generalization, maximizing the number of discriminable classes is not

necessarily the goal. However, suppose that a set of overall target classes (such as those found by

conceptual clustering using the original attributes) is known.Given this set and a hierarchically

decomposable model, it is best to dichotomize as cleanly (orthogonally) as possible. This process

is subject to constraints of network complexityand learning complexity of the induced attributes

(i.e., whether the subnetworks can be trained efficiently).

Definition 5: A perfect hypercubicfactorization ofD under blj is one that is orthogonal and

whose descendants' at each level are equal in size.

Table 14 gives statistics onsquarefactorizations (perfect hypercubic factorizations using 2

children).

m n Nbad(m,n) 2mn % inefficient

2 2 16 16 100

3 3 466 512 91

4 4 39203 65536 59.8

5 5 7119516 33554432 21.2

6 6 2241812648 68719476736 3.3

Table 14. Number of possible and inefficient square factorizations.

Property 2: Perfect hypercubic factorizations minimize the sum of factorization size among child

attributes, given the factorization size of the parent.

Although minimum total factorization size among children does not guarantee minimum network

complexity, our examples below show that it is a good empirical indicator.

This analysis leaves two practical questions to be answered:

1. What is the empirical likelihood of finding efficient factorizations of D?

109

This depends on many issues, the most important being the quality ofF, the constructive

induction algorithm. I consider the case where a goodB0 is already known or can be found by

knowledge-based inductive learning [Be90].

2. What is the difficulty of learning a factorization of D even if it is efficient?

The results for the musical tune classification problem, reported in Chapter 5, demonstrate

that the experimental difficulty of training a specialist-moderator network on efficient

factorizations is lower than that of training a non-modular feedforward or temporal ANN. By

“difficulty” I mean achievable test error given a consistent limit on network complexity and

training time. In future work, I will investigate the computational learning theoretic properties of

specialist-moderator networks, but these are beyond the scope of this dissertation.

110

B. Implementation of Learning Architectures and Methods

This appendix presents salient implementation details for the time series learning

architectures, training algorithms, and hierarchical mixture models used in this dissertation.

1. Time Series Learning Architectures

This section defines the underlying mathematical models for thememory formsstudied, and

which are used to populate the database of learning techniques described in Chapter 3. Each

memory form corresponds to a row of Table 1 in Chapter 3. The implementation platforms are

also briefly summarized.

1.1 Artificial Neural Networks

The artificial neural networks used for experimentation in this dissertation were implemented

primarily usingNeuroSolutions v3.00, 3.01, and3.02 [PL98], which I used to collect results on

temporal ANNs, unless otherwise noted. I implemented wrappers (e.g., for metric-based model

selection as described in Section 5.2) and custom automation (e.g., for exhaustive partition

evaluation as described in Section 5.3) usingMicrosoft Visual C++ 5.0and Visual Basic for

Applications under Windows NT 4.0. Data preprocessing (encoding, partitioning) and

postprocessing (discretization of intermediate outputs for moderator networks, counting the

number of correctly classified exemplars) was implemented in C++ (Microsoft Visual C++ for

Windows NTandGNU C++ for Linux). In many cases this code was integrated with or built

upon that for metric-based model selection and partition evaluation (see Appendix C).

Preliminary experiments testing the ability of simple (specifically, Elman) recurrent networks to

predict various stochastic processes (such as those generated by Reber grammars and hidden

Markov models [RK93, Hs95]) were implemented inMATLAB (versions 4 and 5) using the

neural networks toolbox.

Adjustment of tunable parametersother than attribute partitioning (subset membership for

each input) was primarily performed by hand, and automated in a few select cases. I

implemented such automation mostly for synthesizing data in evaluation experiments as

documented in Chapter 5 and Appendix D, using hybrids of scripting languages such as Visual

Basic, theNeuroSolutionsmacro language [PL98], and Perl, along with some standalone C++

programs. Parameter tuning for neural networks consisted of:

111

1. The number of hidden units, which was tuned by hand to a consistent baseline and

normalized (see Section B.3 below) for components of a hierarchical mixture

2. The step size, also tuned by hand13

3. The momentum values and time constants (see Section 5.1)

1.1.1 Simple Recurrent Networks

The term simple recurrent network refers to the family of artificial neural networks that

containsrecurrent feedback, or connections from one layer to an earlier one (according to the

feedforward data flow). They are calledsimplebecause the network dynamics do not, in general,

provide a facility for adapting the weights (i.e., decay values). The weights are therefore

considered constants relative to the training algorithm (but can still be treated as high-level,

tunable parameters using a wrapper for the supervised learning component). Other types of

recurrent networks, such aspartially and fully recurrent networks, have trainable recurrent

weights.

Jordan networks, whose dynamics were first elucidated by Jordan [Jo87], contain recurrent

connections from the output tocontext elementswith exponential decay. Similarly, Elman

networks are recurrent networks with connections from the first hidden layer to the context

elements [El90, PL98]. Finally, input recurrent networks are those with connections from input

to context elements [RH98]. Input recurrent networks are a type ofmoving averagemodel

previously studied under the termexponential trace memory[Mo94, MMR97, PL98].

In linear systems the use of the past of the input signal creates what is called the moving

average (MA) models. These are best at representing signals that have a spectrum with sharp

valleys and broad peaks [BD87, PL98]. The use of past values of theoutputgenerates a memory

form corresponding toautoregressive(AR) models. These models are best at representing signals

that have broad valleys and sharp spectral peaks [BD87, PL98]. In the case of nonlinear systems,

such as neural nets, the MA and AR topologies are nonlinear (NMA and NAR, respectively). The

Jordan network is a restricted case of an NAR(1) model, while the input recurrent network is a

restricted case of NMA. Elman networks do not have a counterpart in linear system theory.

13 Experiments with step size adaptation algorithms (such as Delta-Bar-Delta [Ha94, PL98] and exponential
adjustment as used in the MATLAB Neural Networks toolbox) showed that extant procedures are generally
too insensitive to use as wrappers for performance tuning, on arbitrary time series learning problems.

112

These simple recurrent network topologies have different processing power, but the question of

which one performs best for a given problem is a coarse-grained model selection problem.

Neural networks with context elements can be analytically characterized for the case of linear

processing elements, in which case the context elements are equivalent to a very simple lowpass

filter [PL98]. A lowpass filter creates an output that is a weighted (average) value of some of its

more recent past inputs. In the case of the Jordan context unit, the output is obtained by summing

the past values multiplied by the cumulative decayτt-k, a scalar:

Thexi value is thei th input in the case of input recurrent networks, output fromi th unit in the

first hidden layer in the case of Elman networks, and output from thei th unit from the output layer

in the case of Jordan networks.

I conducted preliminary experiments using Elman, Jordan, and input recurrent networks on

the musical tune classification and the crop condition monitoring data sets. The results indicate

that for unpartitioneddata (i.e., non-modular learning), the input recurrent network type tends to

outperform Elman and Jordan networks of comparable complexity. This suggests that in these

particular cases, the data are most effectively assumed to originate from MA processes than from

AR or Elman-type processes. More specifically, they are more strongly attuned to the

exponential tracememory form. In the crop monitoring test bed, however, non-exponential

patterns can be observed in visualizations such as the phased correlogram (Figures 13 and 14, in

Chapter 5). The positive learning results from the multi-strategy, hierarchical mixture model

(pseudo-HME of TDNN and input recurrent specialists with a Gamma network moderator)

provides evidence that these patterns conform to different memory forms (in this case, two

different MA processes – one exponential, one non-exponential).

1.1.2 Time-Delay Neural Networks

Time-delay neural networks (TDNNs) are an alternative type of AR model that expresses

future values of ANN elements as a linear recurrence over past values [LWH90, Mo94]. This is

implemented using memory buffers at the input and hidden layers (associated with the units

rather than weights). Thedelayrepresents the number of discrete time units of memory that the

�
=

−=
t

k

kt
ii txty

0

)()(τ

113

model can represent, a quantity also known asdepth[Ha94, Hs95, MMR97, PL98]. TDNNs can

be thought of as having as many “copies” of a hidden or input unit as there are delays [Ha94].

Data is propagated from one copy to the next in a cascaded (serial) delay line; the acronymTDNN

has therefore also been used to meantapped delay-line neural network[MMR97, PL98]. The

TDNN architecture has the simplest mathematical description in terms of convolutional codes, as

given in Appendix C.

1.1.3 Gamma Networks

Gamma networks (ANNs whose elements are generalized temporal units calledGamma

memories) are a type of ARMA model [DP92, Mo94, PL98]. They express bothdepth(through a

delay-line-based mechanism that represents the MA part of the pattern-generating process) and

resolution(through an exponential decay-based mechanism that represents the AR part) [Mo94,

MMR97]. The combination of both tapped delay lines and exponential traces in a Gamma

network makes the model more general and flexible, but also increases the number of degrees of

freedom. The nonlinear dynamics of a Gamma network are extremely complex – relatively more

so than for a comparably-sized SRN or TDNN [DP92]. Gamma networks commonlyrequire

fewer trainable parameters to acquire a general ARMA process than a pure AR or MA model;

however, the added complexity means that they also tend to require more updates to converge

[DP92, Mo94, MMR97]. Furthermore, the complexity is aggravated when global optimization is

used; the extant research on ARMA models suggests that extension to Bayesian learning, for

example, poses difficulties [PL98, Wa98]. In future work, I intend to investigate integrative

models (ARMA and ARIMA) [Ch96] with variational and MCMC learning [Ne96, Jo97a],

especially in the capacity of data fusion.

1.2 Bayesian Networks

1.2.1 Temporal Naïve Bayes

The implementation of the naïve Bayes learning architecture is based entirely on that given in

MLC++ , Kohavi et al’s machine learning library in C++ [KS96, KSD96]. Though I installed

tested under both theMicrosoft Windows NT 4.0andRedHat Linux 5.1platforms, I conducted

most experiments using the Linux version, for efficiency’s sake. In several exploratory

experiments, I constructed artificial features to test the capability of discrete naïve Bayes to

acquire simple memory forms (such as M-of-N and paritythrough time). The results are reported

in Appendix D.

114

1.2.2 Hidden Markov Models

My original implementation of HMM learning used the Viterbi algorithm [Le89, CLR90,

BM94] and was written in MATLAB [Hs95]; a port to GNU C++ was used for additional

experiments [Hs95]. Parameter learning with gradient and EM learning rules can be performed

using an ANN representation (wherein HMM parameters are encoded in ANN weights, then

interpreted after training). This dualization was documented by Bourlard and Morgan [BM94]

and is similar to several discussed by Ackley, Hinton, and Sejnowski [AHS85], Neal [Ne92,

Ne93], and Myllymäki [My95, Hs97].

2. Training Algorithms

This section defines the training algorithms for the types oftarget distributionstudied, and

which are used to populate the database of learning techniques. Each training algorithm

corresponds to a single column (subheading of a learning method) of Table 1 in Chapter 3.

2.1 Gradient Optimization

Gradient learning is a basic optimization technique [BF81, Wi93] adapted to parameter

estimation in network models [MP69, MR86]. Its advantages are that it is simple to implement

and highly general (over families of probabilistic networks – i.e., learning architectures). Its

disadvantages are that it is, in general, slow to converge [MR86, JJ94] and, by definition,

susceptible to local optima [MR86, Ha94, Bi95]. The implementations tested in this dissertation

were implemented first usingMATLAB 4(using the Elman network code in the Neural Network

toolbox), then inNeuroSolutions[PL98]. The exact gradient learning algorithm used was

backpropagation with momentum[Ha94, PL98], though experiments with simple Step, Delta-

Bar-Delta, and Quickprop learning rules were conducted. These generally resulted in worse

performance on the data sets tested, which were generally heterogeneous time series or subsets

thereof. Batch update was used in all cases, as incremental (online) learning produced generally

poorer performance as well.

2.2 Expectation-Maximization (EM)

As mentioned in Section B.1.2 above, the Viterbi algorithm (a graph optimization algorithm

for probabilistic network learning [Le89, CLR90]) was implemented for experiments on HMMs.

115

As EM does, the Viterbi algorithm estimates the maximum likelihood path through a state

transition model. The primary difference is that the Viterbi algorithm is designed for the

backward problem (maximum likelihood estimation) and learning by iterative refinement requires

an update step. In EM, this is called the “maximize” step (the acronymEM is also taken to stand

for Estimate-and-Maximize) [Le89]. Variants of Viterbi used to test the efficacy of naïve Bayes

(the learning rule, not the learning architecture) on simple HMMs were implemented using C++

and MS Excel [Hs95]. Experiments using this combination on the crop condition monitoring data

set indicated that gradient learning (MAP estimation) was preferable in that case.

2.3 Markov chain Monte Carlo (MCMC) Methods

MCMC refers to a family of algorithms that estimates network parameters by integrating over

the conditional distribution of models given observed data [Ne96]. This integration is performed

using Monte Carlo techniques (also known asrandom sampling) and the distribution sampled

from is a Markov chain of network configurations (states of a large stochastic model). The

MCMC algorithm implemented in this dissertation is the Metropolis algorithm for simulated

annealing, documented in [KSV83]. I implemented simulated annealing using large-scale

modifications toNeuroSolutionsbreadboards (network and training algorithm specifications)

[PL98]. These modifications were based on Neal’s implementation of the Metropolis algorithm

[Ne96, Fr98] and required extensive use of the dynamic link library (DLL) integration feature of

NeuroSolutions[PL98].

3. Mixture Models

This section defines the mathematical models for thehierarchical mixture modelsstudied,

and which are used to populate the database of learning techniques. Each mixture type

corresponds to a group of 3 columns (main heading of a learning method) of Table 1 in Chapter

3. Together with the choice of training algorithm, the choice of mixture model determines the

learning methodto be used (as prescribed by the distributional metrics). This specification, plus

that of the learning architecture (as prescribed by the architectural metrics), forms acompositeas

described in Section 3.1 and Appendix C.

3.1 Specialist-Moderator (SM)

116

The specialist-moderator network was implemented usingNeuroSolutions3.0, 3.01, and 3.02

[PL98] with data fusion being performed first by hand, then using automation scripts written in

Visual Basic for Applications(VBA). Specialist outputs were typically passed through a winner-

take-all filter that converted real-value intermediate output to 1-of-C coded [Sa98] (also known as

a locally coded [KJ97]) output. This provides input to the moderator that is sparse, discrete, and

conforms to the construction algorithm for SM networks,Select-Net, given in Section 4.3.

Experiments on the musical tune classification data set showed that winner-take-all prefiltering

for moderator networks resulted in better performance (classification accuracy using the same-

sized moderator networks) than raw intermediate outputs from the specialists.

3.2 Hierarchical Mixtures of Experts (HME)

The hierarchical mixture model (a variant of the HME architecture of Jordan et al [JJB91,

JJNH91, JJ94]) was also implemented usingNeuroSolutions3.0, 3.01, and 3.02 with data fusion

being performed first by hand, then using automation scripts written inVisual Basic for

Applications(VBA). Experiments using winner-take-all prefiltering and unfiltered intermediate

targets were inconclusive for synthetic data sets and for the crop condition monitoring data set.

My conjecture is that for most HME-type applications, unfiltered intermediate data will tend to

perform slightly better, because this is most consistent with the original design of the gating

networks [JJ94].

117

C. Metrics

This appendix gives empirical and mathematical background for the architectural and

distributional metrics, presents the design rationale for each one to show how it was derived, and

explains how the individual metrics are computed.

1. Architectural: Predicting Performance of Learning Models

As explained in Section 1.1 and Section 3.2, the primary criterion used to characterize a

stochastic process in my multi-strategy time series learning system is itsmemory form.

1.1 Temporal ANNs: Determining the Memory Form

To determine the memory form for temporal ANNs, I make use of two properties of

statistical time series models. The first property is that the temporal pattern represented by a

memory form can be described as aconvolutional code. That is, past values of a time series are

stored by a particular type of recurrent ANN, which transforms the original data into its internal

representation. This transformation can be formally defined in terms of akernel functionthat is

convolved over the time series. This convolutional or functional definition is important because

it yields a general mathematical characterization for individually weighted “windows” of past

values (time delay orresolution) and nonlinear memories that “fade” smoothly (attenuated decay,

or depth) [DP92, Mo94, PL98]. It is also important to metric-based model selection, because it

concretely describes the transformed time series that we should evaluate, in order to compare

memory forms and choose the most effective one. The second property is that a transformed time

series can be evaluated by measuring the change inconditional entropy[CT91] for the stochastic

process of which the training data is a sample. The entropy of the next value conditioned on past

values of theoriginal data should, in general, be higher than that of the next value conditioned on

past values of thetransformeddata. This indicates that the memory form yields an improvement

in predictive capability, which is ideally proportional to the expected performance of the model

being evaluated.

1.1.1 Kernel Functions

Given an input sequencex(t) with components (){ }niti ≤≤1,x̂ , its convolution ()tix̂ with a

kernel functionci(t) (specific to thei th component of the model) is defined as follows:

118

() () ()kktct
t

k
ii xx −=�

=0

ˆ

(Eachx or xi value contains all the attributes inone subsetof a partition.)

The memory form for a recurrent ANN is determined by its kernel function. For tapped

delay-line memories (time-delay neural networks, or TDNNs), the kernel function is:

()

() () diitt

diij
jc

i

i

≤≤−=
�
�
� ≤≤=

=

1,ˆ

otherwise0

1,for1

xx

This kernel function is inefficient to compute, as a tapped-delay line can be implemented in

linear space and linear time without convolution (which takes quadratic time in the

straightforward implementation). The above characterization, however, is still useful because it

captures the notion ofresolution. TDNNs arehigh-resolution, low-depthmodels: they are

flexible, nonlinear AR models that degrade totally when the required depth exceeds the number

of memory state variables (delay buffer or “window” width) [Mo94, PL98].

For exponential trace memories (input recurrent networks), the kernel function is:

() ()
() () () ()1ˆ1ˆ

1

−+−=
−=

ttt

jc

iiiii

j
iii

xxx µµ
µµ

This kernel function expressesdepth by introducing a “decay variable” or “exponential

trace” []1,1−∈iµ , for every model component. IR networks arehigh-depth, low-resolution

models: they are flexible, nonlinear MA models that degrade gradually (how slowly depends on

the decay variables, which can be adapted based on the training data) as the required depth grows

[Mo94, PL98]. IR networks donot scale up in complexity with the required information content

for successive elements of the input sequence; that is, they can store information further into the

past, but this information degrades incrementally because it is stored using the same state

variables.

119

Finally, the kernel function for gamma memories is:

() ()

() () () () ()
() () () 0for00ˆand,0for1ˆ

ˆ1ˆ1ˆ

otherwise0

if1

,1,

1,1,,

1

≥=≥+=

−+−=

ÿ
�

ÿ
�

�
≥−��

�

�
��
�

�
=

−

−−

−+

jttt

ttt

lj
l

j
jc

j

jjj

i
lj

i
l

i
ii

ii

µµ

µµµ µµ

µµ

xxx

xxx

This kernel function expresses both resolution and depth, at a cost of much higher theoretical

and empirical complexity (in terms of the number of degrees of freedom, convergence time, and

the additional computation entailed by this more complex function). Gamma memories are even

more flexible nonlinear ARMA models that trade this complexity against the ability to learn both

exponential traces []1,0∈iµ and tapped delay-line weights N∈il .

1.1.2 Conditional Entropy

The entropyH(X) of a random variableX, the joint entropyH(X,Y)of two random variablesX

andY, and conditional entropyH(X|Y)are defined as follows [CT91]:

() ()[]
() ()[]
() () ()

() ()[]
() () rule)(chain,

|lg

||

,lg,

lg

,

YHYXH

YXpE

xXYHxpYXH

YXpEYXH

XpEXH

YXp

x
def

def

def

−=

−=

==

−=

−=

�
∈ÿÿÿÿ

For a stochastic process (time-indexed sequence of random variables)X(t), we are interested

in the conditional entropy of the next value given earlier ones. This can be written as:

() ()()
() () ()()tXtXtXH

ditXtXHH

ddef

idefd

,,|

1,|

1 ÿ=

≤≤=

To measure the improvement due to convolution with a kernel function withd

components, we can computedĤ :

() ()()ditXtXHH idefd ≤≤= 1,ˆ|ˆ

120

where ()tX i
ˆ is as defined above. An additional refinement that allows us to evaluate specific

subsetsof input data (recall that architectural metrics are used to determine the memory form for

a singlesubsetwithin an attribute partition) is to define s
dH and s

dĤ for a subsets:

() ()()
() ()()ditXtXHH

ditXtXHH

ss
def

s
d

ss
def

s

i

id

≤≤=

≤≤=

1,ˆ|ˆ

1,|

Given a kernel function for a candidate learning architecture, I then define the architectural

metric as follows:

s
d

s
d

R
H

H
M

ˆ
=

for a recurrent ANN of type { }GAMMASRNTDNNR ,,∈ . Note that, because s
d

H is identical

to the entropy of a depth-d tapped delay-line convolutional code (for the training data), the metric

TDNNM will always have a baseline value of 1. I adopt this convention merely to simplify the

normalization process.

A final note: an assumption I have made here is that predictive capability is a good indicator

of performance (classification accuracy) for a recurrent ANN. Although the merit of this

assumption varies among time series classification problems [GW94, Mo94], I have found it to be

reliable for the types of time series I have studied.

1.2 Temporal Naïve Bayes: Relevance-Based Evaluation Metrics

The memory form for a general naïve Bayesian classifier [Ko95, KSD96, KJ97], network

[Pe88], or rule set [KSD96] cannot be defined as a convolutional code, so predicting the

effectiveness of naïve Bayes (or approximation by MCMC methods [Hr90, Ne93]) is not as

straightforward. In future work, I will investigate the application of relevance measures [He91,

KJ97] to evaluation of temporal naïve Bayesian networks.

121

1.3 Hidden Markov Models: Test-Set Perplexity

The memory form for anarbitrary HMM is not easy to define as a convolutional code. In

certain linear models, such as first-order HMMs for speech recognition [Le89], algorithms such

as the Viterbi algorithm [Vi67] can be used todecode the hidden state sequence(i.e., solve the

search-based inference [Pe88], orbackward, problem [Le89]). I conducted preliminary

experiments (reported in [Hs95]) on HMM parameter learning using the EM algorithm [DLR77,

Le89] and gradient search by dualization to simple recurrent networks [BM94]. The results

suggest that a good indicator of problem difficulty for a particular HMM architecture is the test-

set perplexity [Le89]:

()nxxxp
n

,,,log
1

21 ÿ

which is an estimate of the true perplexityQ for observed data.Q can be defined in terms of

a finite state model (an HMM [Le89, Ra90] or Reber diagram [RK96]) with statess(t) and

observations X(t):

() ()() () ()()

() ()() () ()() () ()()[]tstxptstxptstXH

tstxQ

Xx

tstxH

|lg||

2| |

�
∈

=

=

or over a state transition grammarG (defined over these states):

() ()

() ()() () ()()�=

=

q

GH

tstXHtsGH

GQ

|

2

π

The measure based upon G is defined over symbols (associated with each transition in an

HMM) and is referred to as theper-wordperplexity in speech recognition [Le89]. In future work,

I will investigate the application of empirical perplexity measures [Le89, Ra90] to evaluation of

HMMs for time series learning. The principle behind this approach is that, just as the ratio of

conditional entropy for a convolutional code is a good indicator of predictive capability for a

recurrent ANN model, so is the perplexity a good indicator of difficulty for a time series learning

problem,given a particular parametric model. Given specific topologies of HMMs [Le89, Ra90,

BM94] or partially observable Markov decision processes [BDKL92, DL95], these information

theoretic measures indicate how appropriate each model is for the training data.

122

2. Distributional: Predicting Performance of Learning Methods

The learning methods being evaluated are: the hierarchical mixture model used to perform

multi-strategy learning in the integrated, or composite, learning system, and the training

algorithm used. This section presents the metrics for each.

2.1 Type of Hierarchical Mixture

The expected performance of a hierarchical mixture model is aholistic measurement; that is,

it involves all of the subproblem definitions, the learning architecture used for each one, and even

the training algorithm used. It must therefore take into account at least the subproblem

definitions. I designed distributional metrics to evaluate only the subproblem definitions. This

criterion has three benefits: first, it is consistent with the holistic function of mixture models;

second, it is minimally complex, in that it omits less relevant issues such as the learning

architecture for each subproblem from consideration; and third, it measures the quality of an

attribute partition. The third property is very useful in heuristic search over attribute partitions:

the distributional metric can thus serve double duty as an evaluation function for a partition

(given a mixture model to be used) and for mixture model (given a partitioned data set). As a

convention, I commit the choice ofpartition first, then the mixture model and training algorithm,

then the learning architectures for each subset, with each selection being made subject to the

previous choices.

2.1.1 Factorization Score

The distributional metric for specialist-moderator networks is thefactorization score. This is

an empirical measure of how evenly the learning problem is modularized; it is not specific to time

series data. The score is a penalty function whose magnitude is proportional to the deviation

from perfect hypercubicfactorization. In Appendix A, a factorization is defined for a locally

coded targetblj (l ≥ 0). blj is formed through cluster definition using a subsetalj of a partition at

level l; that is, the set of distinguishable classes depends on therestricted viewthrough a subset of

the original attributes. We can therefore characterize the restricted view by measuring the

factorization size for an attribute subset. The most straightforward way to do this is through a

naïve cluster definition algorithm that works as follows

Given: a set of overall target classes and an attribute partition

123

1. Sweep through the training data once for every subset.

2. If any two exemplars occur such that the same input (restricted to the attributes in the

subset) is mapped to different output classes,mergethe equivalence classes for these two

output classes.

This algorithm is best implemented using aunion-finddata structure as described in Chapter

22 of Cormen, Leiserson, and Rivest [CLR90]. I implemented a union-find-based version of this

algorithm, which requires less than half the running time required for the HME metric (described

in Section 2.1.2 below) for small numbers of input attributes. As Table 4 in Chapter 5 shows,

however, performance tends to be determined by memory consumption, with thrashing becoming

a bottleneck for as few as 8 to 10 attributes.

If the number of distinguishable output classes for each subsetai, 1 ≤ i ≤ k, is oi, then alloi are

equal in the perfect hypercubic factorization. Let the product ofoi beN:

∏

�

=

=

=

��
�

�
��
�

�
−=

k

i
i

k

i
k

i
FS

oN

N

o
M

1

1

lg

The metric imposes a penalty on every factorization (belonging to a single subset) that

deviates from the “ideal case” [RH98]. For example, suppose a set of attributes is partitioned into

three subsets, whose factorization sizes are 6, 6, and 6. ThenN = 216 andMSM = 0. If, for a

different size-3 partition, the factorization sizes are 2, 18, and 6,N = 216, but

17.33lg2 −≈−=SMM .

2.1.2 Modular Mutual Information Score

The distributional metric for HME-type networks is themodular mutual information score.

This score measures mutual information across subsets of a partition [Jo97b]. It is directly

proportional to the conditional mutual information of the desired output given each subsetby

itself (i.e., the mutual information between one subset and the target class,given all other

subsets). It is inversely proportional to the difference between joint and total conditional mutual

124

information (i.e., shared information among all subsets). I define the first quantity asIi for each

subsetai, and the second quantity as∇I for an entire partition.

First, theKullback-Leibler distancebetween two discrete probability distributionsp(X) and

q(X) is defined [CT91] as:

() ()
()

() ()
()�

∈

=

�
�

�
�
�

�
=

ÿÿÿÿx

pdef

xq

xp
xp

Xq

Xp
EqpD

lg

lg||

The mutual information between discrete random variablesX andY is defined [CT91] as the

Kullback-Leibler distance between joint and product distributions:

() () ()()

()
()

() ()

() ()
() ()

() ()
()

() () () ()

() () () ()

() ()
() () ()
() ()XYHYH

YXHYHXH

YXHXH

yxpyxpxpxp

yxpyxpxpyxp

xp

yxp
yxp

ypxp

yxp
yxp

YpXp

YXp
E

ypxpyxpDYXI

yxx

yxyx

yx

yx

yxp

def

|

rule)(chain,

|

|lg,lg

|lg,lg,

|
lg,

,
lg,

,
lg

||,);(

,

,,

,

,

,

−=
−+=

−=

�
�
�

�
�
�
�

�
−−=

+−=

=

=

�
�

�
�
�

�
=

=

��

��

�

�
∈∈ ����ÿÿÿÿ

The conditional mutual information ofX andY given Z is defined [CT91] as the change in

conditional entropy when the value ofZ is known:

() () ()
() ()ZXYHZYH

ZYXHZXHX;Y|ZI def

,||

,||

−=
−=

125

I now define thecommon informationof X, Y, andZ (the analogue ofk-way intersection in set

theory, except that it can have negative value):

() () ()
() ()
() ()
() ()
() ()YZYIZYI

YZXIZXI

YZYIZYI

YZXIZXI

ZYXIYXIX;Y;ZI def

|;;

|;;

|;;

|;;

|;;

−=
−=
−=
−=

−=

The idea behind the modular mutual information score is that it should reward high

conditional mutual information between an attribute subset and the desired output given other

subsets (i.e., each expert subnetwork will be allotted a large share of the work). It should also

penalize high common information (i.e., the gating network is allotted more work relative to the

experts). Given these dicta, we can define the modular mutual information for a partition as

follows:

() () () () () ()()
{ }

{ }n

k

i
i

k

i
i

k

nndef

XXX

ypxpxpxpyxxxpDI

,,,

,,

||,,,,;

21
1

1

1

2121

ÿ

ÿ

ÿÿ

�

�

=

∅=

=

=

=

=

X

X

XXX

YX

which leads to the definition ofIi (modular mutual information) and∇I (modular common

information):

()
() ()

()

() �
=

∇

+−

≠

−=

=

−=

=

k

i
idef

kdef

kiiidef

iidefi

II

II

HH

II

1

21

111

;

;;;;

,,,,,,|;

|;

YX

YXXX

XXXXYXYX

XYX

ÿ

ÿÿ

Because the desired metric rewards highIi and penalizes high∇I , we can define:

()

()YX

YX

;2

;

1

11

1

II

III

IIM

k

i
i

k

i
i

k

i
i

k

i
iMMI

−��
�

�
��
�

�
=

−−��
�

�
��
�

�
=

−��
�

�
��
�

�
=

�

��

�

=

==

∇
=

126

Figure 26. Modular mutual information score for a size-2 partition

Figure 26 depicts the modular mutual information criterion for a partition with 2 subsetsX1

andX2, whereY denotes the desired output.

2.2 Algorithms

The architectural metrics highlight the strengths of each learning architecture by estimating

the information gain from a memory form, and the distributional metrics for hierarchical mixture

models highlight the strength of each organization by estimating the distribution of work. My

preliminary design for distributional metrics for algorithms similarly attempts to estimate the

benefits of using a particular type of local or global optimization. The algorithms studied in this

dissertation include gradient (local optimization or delta-rule) learning, the EM algorithm

(another type of local optimization), and MCMC methods (global stochastic optimization or

Bayesian inference), though I have concentrated primarily on gradient algorithms. As for the

TDNN architecture, I use gradient learning as a baseline, so its metric can be considered a

constant (and need not be computed).

2.2.1 Value of Missing Data

A prototype distributional metric I considered for the EM algorithm is similar to a value-of-

information (VOI) measure [RN95] that measures the expected information gain from

127

interpolation of missing data. The design rationale is that EM is the only local optimization

algorithm available that can interpolate missing data, and should therefore be used when there is

enough data missing for its approximation to be worth while. This metric has not yet been fully

developed or evaluated, because VOI is a nonnegative measure, while EM does is not guaranteed

to achieve improved learning through missing data estimation [DLR77, Ne93].

2.2.2 Sample Complexity

Finally, the distributional metric for MCMC methods (specifically, the Metropolis algorithm

for simulated annealing [KGV83, Ne93, Ne96]) is based on the frequency of local optima.

Sample complexity estimation is used inconvergence analysisfor MCMC methods [Gi96]. This

metric has not yet been fully developed or evaluated. Some preliminary comparative experiments

using gradient and MCMC learning, however, have shown that short-term convergence analysis

methods, such as learning speed curves [Ka95, Pe97] can provide quantitative indicators of the

necessity of global optimization.

128

D. Experimental Methodology

This appendix describes the experimental design for system evaluation, both component-wise

and integrated, and the results of some additional experiments that support the ones described in

Chapters 5 and 6.

1. Experiments using Metrics

My experimental approach to metric-based model selection and its evaluation builds on two

research applications that I have investigated: selection of compression techniques for

heterogeneous files, and selection of learning techniques (architectures, mixture models, and

training algorithms) for heterogeneous time series. The latter application of metric-based model

selection, which I refer to in this dissertation, ascomposite learning, is described in Chapter 3.

This section reports some additional relevant findings from the two research efforts.

1.1 Techniques and Lessons Learned from Heterogeneous File Compression

Heterogeneous filesare those that contain multiple types of data such as text, image, or audio.

We have developed an experimental data compressor for that outperforms commercial, general-

purpose compressors on heterogeneous files [HZ95]. It divides a file into fixed-length segments

and empirically analyzes each (cf. [Sa89, HM91]) for itsfile typeand dominantredundancy type.

For example,dictionary algorithms such as Lempel-Ziv coding are most effective with frequent

repetition of strings;run length encoding, on long runs of bits; andstatisticalalgorithms such as

Huffman codingandarithmetic coding, when there is nonuniform distribution among characters.

These correspond to ourredundancy metrics: string repetition ratio, average run length, and

population standard deviation of ordinal character value. The normalization function over these

metrics is calibrated on a corpus of homogeneous files. Using the metrics and file type, our

system predicts, and applies, the most effective algorithm and update (e.g., paging) heuristic for

the segment. In experiments on a second corpus of heterogeneous files, the system selected the

best of the three available algorithms on about 98% of the segments, yielding significant

performance wins on 95% of the test files [HZ95].

1.2 Adaptation to Learning from Heterogeneous Time Series

129

The analogy between compression and learning [Wa72] is especially strong for technique

selection from a database of components. Compression algorithms correspond to network

architectures in our framework; heuristics, to applicable methods (mixture models, learning

algorithm, and hyperparameters for Bayesian learning). Metric-based file analysis for

compression can be adapted to technique selection for heterogeneous time series learning. To

select among network architectures, we use indicators of temporal patterns typical of each;

similarly, to select among learning algorithms, we use predictors of their effectiveness. The

analogy is completed by the process of segmenting the file (corresponding to problem

decomposition by aggregation and synthesis of attributes) and concatenation of the compressed

segments (corresponding to fusion of test predictions).

The compression/learning analogy also provides some guidelines for metric calibration.

[HZ95] describes how multivariate Gamma distributions are empirically fitted for a homogeneous

corpus of 50 representative files, in order to select the algorithm that corresponds to the dominant

redundancy type. A similar nonlinear approximation procedure is applied to normalize

architectural and distributional metrics (separately) for comparison purposes. Note that

normalization is not needed when distributional metrics are being used to evaluate attribute

partitions, even though these are the same metrics used to select hierarchical mixture models.

2. Corpora for Experimentation

This section briefly describes the collection and synthesis of representative test beds for

testing specific learning components, isolated aspects of the composite learning system, and the

overall system.

2.1 Desired Properties

As explained in Sections 1.1.4 and 1.4.3, this dissertation focuses on decomposable learning

problems defined over heterogeneous time series. To briefly recap, a heterogeneous time series is

one containing data from multiple sources [SM93], and typically contains different embedded

temporal patterns (which can be formally characterized in terms of different memory forms

[Mo94]). These sources can therefore be thought to correspond to different “pattern-generating”

stochastic processes. A decomposable learning problem is one for which multiple subproblems

130

can be defined by systematic means (possibly based on heuristic search [BF81, Wi93, RN95,

KJ97] or other approximation algorithms [CLR90]). Some specific properties that characterize

most kinds of heterogeneous and decomposable time series, and are typically of interest for real-

world data, are as follows:

1. Heterogeneity: multiple physical processes for which a stochastic process model is

known, hypothesized, or can be hypothesized and tested

2. Decomposability: a known or hypothesized method for isolating one or more of these

processes (often published in the literature of the application domain)

3. Feasibility: evidence that this process is reasonably “homogeneous” (in the ideal case,

evidence that all the embedded processes are homogeneous)

These properties are present to some degree in the musical tune classification and crop

condition monitoring test beds. They can also be simulated in synthetic data, and I have done so

to a realistic extent.

2.1.1 Heterogeneity of Time Series

The crop condition monitoring test bed [HGL+98, HR98b] is heterogeneous in that:

1. Meteorological, hydrological, physiological, and agricultural processes represent highly

disparate sources of data.

2. These processes are reflected in the observable phenomena (weather statistics, subjective

estimates of condition) through different stochastic processes (see Section 5.1.2).

3. The scale and structure of spatiotemporal statistics varies greatly: temporal granularity,

spatial granularity, and proportion of missing data all fluctuate from attribute to

attribute.14

The musical tune classification test bed [HR98a, RH98] is heterogeneous in that:

14 In this dissertation, I have applied simple averaging and downsampling methods to deal with this aspect
of heterogeneity for this test bed. Adaptation to scale and structure of large-scale geospatial data, however,
is an important topic for future work whereby this research may be refined and extended.

131

1. The signal preprocessing transforms produce training data that originates from different

“sources” (algorithms) and is inherently multimodal. (There is also a natural embedding

of the ideal attribute partition based on these transforms.)

2. The processes that each transform “extracts” are typically very different in terms of

signal waveshape [RH98] and therefore evokedifferent memory forms.

2.1.2 Decomposability of Problems

The crop condition monitoring test bed [HGL+98, HR98b] is decomposable in that:

1. As the phased correlograms in Chapter 5 indicate, the memory forms manifest in

different components of the time series (typically different weeks of the growing season

and different magnitudes). The patterns also manifest to a certain extent within different

attributes, although this effect (which prescribes the specialist-moderator network) is

weaker than the “load balancing” effect.

2. As the comparative experiment using SRNs, TDNNs, and multilayer perceptrons

(feedforward ANNs) and the pseudo-HME fusion experiments show, the embedded

patterns can be isolated. Furthermore, use of different memory forms tends to distribute

the computational workload.

The musical tune classification test bed [HR98a, RH98] is decomposable in that:

1. The problem is inherently “factorizable” as defined in Appendix A.

2. The factorizations lend themselves well to separate SRNs (in this case, the same species:

input recurrent specialists and moderators).

2.2 Synthesis of Corpora

The synthesis of experimental corpora also emphasizes heterogeneity and decomposability,

but additionally focuses on typically hard problems that have traditionally been mitigated by the

use of constructive induction [Gu91, Do96, Io96, Pe97]. An example of this is themodular

parity problem, a member of theXOR/parity family that is often used to demonstrate the

limitations of certain inducers [Gu91, Pe97], most (in)famously the single-layer perceptron

132

[MP69]. Modular parity simply defines the target concept as a combination (Cartesian product)

of parity functions defined on each subset, i.e.:

{ }1,0

21

21

1

≡∈

⊕⊕⊕=
×××=

= ∏
=

H

Y

YYY

YY

ij

iniii

k

k

i
i

X

XXX
i

ÿ

ÿ

2.3 Experimental Use of Corpora

I use the synthetic and real-world test data to: calibrate functions for metric normalization;

experiment with metrics and learning components (especially mixture models); and evaluate

partition search as compared to exhaustive enumeration.

2.3.1 Fitting Normalization Functions

Normalization functions are calibrated based on test sets, both by hand and by histogramming

(as used in [HZ95]). Currently, the normalization corpora (for which eachset of training data

constitutes a single point) is of insufficient volume to perform systematic learning from data

[Ri88]. In future work, I plan to collect and synthesize representative corpora for every

combination of learning architecture and available method, to promote the validity of the metrics

for all plausible configurations of “prescribed learning technique”.

2.3.2 Testing Metrics and Learning Components

My general directive for experiments with distributional metrics (especially those for

heirarchical mixture models) was to simultaneously use the metric to select a learning component

and to evaluate a candidate partition. By “simultaneous” I mean that the same metric was used in

both contexts without substantial additional computations (not that the choice was committed

concurrently).

2.3.3 Testing Partition Search

I generated numerous synthetic test sets to evaluate the partition enumerator, and to compare

various informed search algorithms over the partition state space. These test sets had the

common property that they were of significant difficulty (e.g., modular parity); decomposable

133

into well-balanced modules,provided the partitioning algorithm was complete and empirically

sound; and demonstrated how a problem could be sufficiently decomposable for afair allotment

of computational resources. The fairness criterion means that the same number of trainable

weights is allotted throughout a modular network (i.e., a hierarchical mixture model) – thus, all

non-modular networks are being compared to mixture models whose specialists and moderators

have a total network complexity that is comparable. (This actually skews the balance in favor of

the non-modular inducers, because it disregards the possibility that parallel processing can be

used in concurrent training of “siblings” in a hierarchical mixture model.)

In some test sets I introduced a nontrivial, but tolerable, quantity of “mixing” or “crosstalk”

among modules. For the most part, the modular networks showed graceful degradation withat

least the same quality as non-modular networks; however, this noise only made the partitioning

algorithm more difficult, so I omitted it from further experimentation. An interesting line of

future work, however, is to examine the robustness and incrementality of modular networks

[Hr96, RH98].

134

References

[AD91] H. Almuallim and T. G. Dietterich. Learning with Many Irrelevant Features. In
Proceedings of the National Conference on Artificial Intelligence (AAAI-91), p. 129-134,
Anaheim, CA. MIT Press, Cambridge, MA, 1991.

[AHS85] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A Learning Algorithm for Boltzmann
Machines.Cognitive Science, 9:147-169, 1985.

[AKA91] D. W. Aha, D. Kibler, and M. K. Albert. Instance-Based Learning Algorithms.
Machine Learning, 6:37-66.

[Am95] S.-I. Amari. Learning and Statistical Inference. InThe Handbook of Brain Theory and
Neural Networks, M. A. Arbib, editor, p. 522-526.

[BD87] P. J. Brockwell and R. A. Davis.Time Series: Theory and Methods.Springer-Verlag,
New York, NY, 1987.

[BDKL92] K. Basye, T. Dean, J. Kirman, and M. Lejter. A Decision-Theoretic Approach to
Planning, Perception, and Control.IEEE Expert7(4):58-65, 1992.

[Be90] D. P. Benjamin, editor.Change of Representation and Inductive Bias. Kluwer Academic
Publishers, Boston, 1990.

[BF81] A. Barr and E. A. Feigenbaum. Search, InThe Handbook of Artificial Intelligence,
Volume 1, p. 19-139. Addison-Wesley, Reading, MA, 1981.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone. Classification and Regression
Trees. Wadsworth International Group, Belmont, CA, 1984.

[BGH89] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier Systems and Genetic
Algorithms. Artificial Intelligence, 40:235-282, 1989.

[Bi95] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, UK,
1995.

[BJR94] G. E. P. Box, G. M. Jenkins, and G.C. Reinsel.Time Series Analysis, Forecasting, and
Control (3rd edition). Holden-Day, San Fransisco, CA, 1994.

[BM94] H. A. Bourlard and N. Morgan.Connectionist Speech Recognition: A Hybrid Approach.
Kluwer Academic Publishers, Boston, MA, 1994.

[BMB93] J. W. Beauchamp, R. C. Maher, and R. Brown. Detection of Musical Pitch from
Recorded Solo Performances.In Proceedings of the 94th Convention of the Audio Engineering
Society, Berlin, Germany, 1993.

[Bo90] K. P. Bogart. Introductory Combinatorics, 2nd Edition. Harcourt Brace Jovanovich,
Orlando, FL, 1990.

135

[BR92] A. L. Blum and R. L. Rivest. Training a 3-Node Neural Network is NP-Complete.
Neural Networks, 5:117-127, 1992.

[Br96] L. Breiman. Bagging Predictors.Machine Learning, 1996.

[BSCC89] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, TheALARM
Monitoring System: A Case Study With Two Probabilistic Inference Techniques for Belief
Networks. InProceedings of ECAIM '89, the European Conference on AI in Medicine, pages
247-256, 1989.

[Bu98] D. Bullock. Personal communication, 1998.

[Ca93] C. Cardie. Using Decision Trees to Improve Case-Based Learning. In Proceedings of the
10th International Conference on Machine Learning, Amherst, MA, p. 25-32. Morgan-Kaufmann,
Los Altos, CA, 1993.

[CF82] P. R. Cohen and E. A. Feigenbaum. Learning and Inductive Inference, InThe Handbook
of Artificial Intelligence, Volume 3, p. 323-511. Addison-Wesley, Reading, MA, 1982.

[CH92] G. F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic
Networks from Data.Machine Learning, 9(4):309-347, 1992.

[Ch96] C. Chatfield. The Analysis of Time Series: An Introduction (5th edition). Chapman and
Hall, London, 1996.

[CKS+93] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, D. Freeman. AUTOCLASS: A
Bayesian Classification System.In Proceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI-93), pages 316-321, 1993.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[Co90] G. Cooper. The Computational Complexity of Probabilistic Inference using Bayesian
Belief Networks. Artificial Intelligence, 42:393-405.

[CT91] T. M. Cover and J. A. Thomas.Elements of Information Theory. John Wiley and Sons,
New York, NY, 1991.

[DH73] R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. Wiley, New York,
NY, 1973.

[DL95] T. Dean and S.-H. Lin. Decomposition Techniques for Planning in Stochastic Domains.
In Procedings of the International Joint Conference on Artificial Intelligence (IJCAI-95), 1995.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood From Incomplete Data
Via the EM Algorithm. Journal of the Royal Statistical Society, 39(Series B):1-38.

[Do96] S. K. Donoho. Knowledge-Guided Constructive Induction.Ph.D. thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1996.

136

[DP92] J. Principé and deVries. The Gamma Model – A New Neural Net Model for Temporal
Processing.Neural Networks, 5:565-576, 1992.

[DR95] S. K. Donoho and L. A. Rendell. Rerepresenting and Restructuring Domain Theories: A
Constructive Induction Approach.Journal of Artificial Intelligence Research, 2:411-446, 1995.

[El90] J. L. Elman. Finding Structure in Time.Cognitive Science, 14:179-211, 1990.

[EVA98] R. Engels, F. Verdenius, and D. Aha.Joint AAAI-ICML Workshop on Methodology of
Machine Learning: Task Decomposition, Problem Definition, and Technique Selection, 1998.

[FD89] N. S. Flann and T. G. Dietterich. A Study of Explanation-Based Methods for Inductive
Learning. Machine Learning, 4:187-226, reprinted inReadings in Machine Learning, J. W.
Shavlik and T. G. Dietterich, editors. Morgan-Kaufmann, San Mateo, CA, 1990.

[Fr98] B. Frey. Personal communication, 1998.

[FS96] T. Freund and R. E. Schapire. Experiments with a New Boosting Algorithm. In
Proceedings of ICML-96.

[GBD92] S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the Bias/Variance
Dilemna. Neural Computation, 4:1-58, 1992.

[GD88] D. M. Gaba and A. deAnda. A Comprehensive Anesthesia Simulation Environment: Re-
creating the Operating Room for Research and Training.Anesthesia, 69:387:394, 1988.

[Gi96] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors.Markov Chain Monte Carlo
in Practice. Chapman and Hall, New York, NY, 1996.

[Go89] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

[Gr92] R. Greiner. Probabilistic Hill-Climbing: Theory and Applications. InProceedings of the
9th Canadian Conference on Artificial Intelligence, p. 60-67, J. Glasgow and R. Hadley, editors.
Morgan-Kaufmann, San Mateo, CA, 1992.

[Gr98] E. Grois. Qualitative and Quantitative Refinement of Partially Specified Belief Networks
by Means of Statistical Data Fusion.Master’s thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1998.

[Gu91] G. H. Gunsch. Opportunistic Constructive Induction: Using Fragments of Domain
Knowledge to Guide Construction.Ph.D. thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1991.

[GW94] N. A. Gershenfeld and A. S. Weigend. The Future of Time Series: Learning and
Understanding. InTime Series Prediction: Forecasting the Future and Understanding the Past
(Santa Fe Institute Studies in the Sciences of Complexity XV),A. S. Weigend and N. A.
Gershenfeld, editors. Addison-Wesley, Reading, MA, 1994.

[Ha89] D. Haussler. Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Learning
Framework.Artificial Intelligence, 36:177-221, 1989.

137

[Ha94] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College
Publishing, New York, NY, 1994.

[Ha95] M. H. Hassoun.Fundamentals of Artificial Neural Networks. MIT Press, Cambridge,
MA, 1995.

[HB95] E. Horvitz and M. Barry. Display of Information for Time-Critical Decision Making. In
Proceedings of the Eleventh International Conference on Uncertainty in Artificial Intelligence
(UAI-95). Morgan-Kaufmann, San Mateo, CA, 1995.

[He91] D. A. Heckerman.Probabilistic Similarity Networks. MIT Press, Cambridge, MA, 1991.

[He96] D. A. Heckerman.A Tutorial on Learning With Bayesian Networks. Microsoft Research
Technical Report 95-06, Revised June 1996.

[HGL+98] W. H. Hsu, N. D. Gettings, V. E. Lease, Y. Pan, and D. C. Wilkins. A New Approach
to Multistrategy Learning from Heterogeneous Time Series. InProceedings of the International
Workshop on Multistrategy Learning, 1998.

[Hi97] G. Hinton. Towards Neurally Plausible Bayesian Networks. Plenary Talk,International
Conference on Neural Networks (ICNN-97), Houston, TX, 1997.

[Hj94] J. S. U. Hjorth. Computer Intensive Statistical Methods: Validation, Model Selection and
Bootstrap. Chapman and Hall, London, UK, 1994.

[HLB+96] B. Hayes-Roth, J. E. Larsson, L. Brownston, D. Gaba, and B. Flanagan.Guardian
Project Home Page, URL: http://www-ksl.stanford.edu/projects/guardian/index.html

[HM91] G. Held and T. R. Marshall. Data Compression: Techniques and Applications, 3rd

edition. John Wiley and Sons, New York, NY, 1991.

[Hr90] T. Hrycej. Gibbs Sampling in Bayesian Networks.Artificial Intelligence, 46:351-363,
1990.

[Hr92] T. Hrycej. Modular Learning in Neural Networks: A Modularized Approach to Neural
Network Classification. John Wiley and Sons, New York, NY, 1992.

[HR76] L. Hyafil and R. L. Rivest. Constructing Optimal Binary Decision Trees is NP-
Complete.Information Processing Letters, 5:15-17, 1996.

[HR98a] W. H. Hsu and S. R. Ray. A New Mixture Model for Concept Learning From Time
Series. InProceedings of the 1998 Joint AAAI-ICML Workshop on Time Series Analysis, to
appear.

[HR98b] W. H. Hsu and S. R. Ray. Quantitative Model Selection for Heterogeneous Time
Series. InProceedings of the 1998 Joint AAAI-ICML Workshop on Methodology of Machine
Learning, to appear.

138

[Hs95] W. H. Hsu. Hidden Markov Model Learning With Elman Recurrent Networks.Final
Project Report, CS442 (Artificial Neural Networks). University of Illinois at Urbana-Champaign,
unpublished, December, 1995.

[Hs97] W. H. Hsu. A Position Paper on Statistical Inference Techniques Which Integrate
Bayesian and Stochastic Neural Network Models. InProceedings of the International
Conference on Neural Networks (ICNN-97), Houston, TX, June, 1997.

[Hu98] T. S. Huang. Personal communication, February, 1998.

[HZ95] W. H. Hsu and A. E. Zwarico. Automatic Synthesis of Compression Techniques for
Heterogeneous Files.Software: Practice and Experience, 25(10): 1097-1116, 1995.

[Io96] T. Ioerger.Change of Representation in Machine Learning, and an Application to Protein
Tertiary Structure Prediction. Ph.D. thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1996.

[JJ93] M. I. Jordan and R. A. Jacobs. Supervised Learning and Divide-and-Conquer: A
Statistical Approach. InProceedings of the Tenth International Conference on Machine
Learning. Amherst, MA, 1993.

[JJ94] M. I. Jordan and R. A. Jacobs. Hierarchical Mixtures of Experts and the EM Algorithm.
Neural Computation, 6:181-214, 1994.

[JJB91] R. A. Jacobs, M. I. Jordan, and A. G. Barto. Task Decomposition Through Competition
in a Modular Connectionist Architecture: The What and Where Vision Tasks. Cognitive Science,
15:219-250, 1991.

[JJNH91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive Mixtures of
Local Experts.Neural Computation, 3:79-87, 1991.

[JK86] C. A. Jones and J.R. Kiniry.CERES-Maize: a Simulation Model of Maize Growth and
Development. Texas A&M Press. College Station, TX, 1986.

[JKP94] G. John, R. Kohavi, and K. Pfleger. Irrelevant Features and the Subset Selection
Problem. InProceedings of the 11th International Conference on Machine Learning, p. 121-129,
New Brunswick, NJ. Morgan-Kaufmann, Los Altos, CA, 1994.

[Jo87] M. I. Jordan. Attractor Dynamics and Parallelism in a Connectionist Sequential Machine.
In Proceedings of the Eighth Annual Conference of the Cognitive Science Society, p. 531-546.
Erlbaum, Hillsdale, NJ, 1987.

[Jo97a] M. I. Jordan. Approximate Inference via Variational Techniques.Invited talk,
International Conference on Uncertainty in Artificial Intelligence (UAI-97), August, 1997. URL:
http://www.ai.mit.edu/projects/jordan.html.

[Jo97b] M. I. Jordan. Personal communication, August, 1997.

[Ka95] C. M. Kadie. SEER: Maximum Likelihood Regression for Learning Speed Curves. Ph.D.
thesis, University of Illinois, 1995.

139

[KGV83] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671-680, 1983.

[Ki86] J. Kittler. Feature Selection and Extraction.Academic Press, New York, NY, 1986.

[Ki92] K. Kira. New Approaches to Feature Selection, Instance-Based Learning, and
Constructive Induction.Master’s thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, 1992.

[KJ97] R. Kohavi and G. H. John. Wrappers for Feature Subset Selection.Artificial Intelligence,
Special Issue on Relevance, 97(1-2):273-324, 1997.

[Ko90] T. Kohonen. The Self-Organizing Map.Proceedings of the IEEE, 78:1464-1480, 1990.

[Ko94] I. Kononenko. Estimating Attributes: Analysis and Extensions ofRelief. In Proceedings
of the European Conference on Machine Learning, F. Bergadano and L. De Raedt, editors. 1994.

[Ko95] R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs.
Ph.D. thesis, Department of Computer Science, Stanford University, 1995.

[KS96] R. Kohavi and D. Sommerfield.MLC++: Machine Learning Library in C++, Utilities
v2.0. URL: http://www.sgi.com/Technology/mlc.

[KSD96] R. Kohavi, D. Sommerfield, and J. Dougherty. Data Mining UsingMLC++ : A
Machine Learning Library in C++. InTools with Artificial Intelligence, p. 234-245, IEEE
Computer Society Press, Rockville, MD, 1996. URL:http://www.sgi.com/Technology/mlc.

[KR92] K. Kira and L. A. Rendell. The Feature Selection Problem: Traditional Methods and a
New Algorithm. InProceedings of the National Conference on Artificial Intelligence (AAAI-92),
p. 129-134, San Jose, CA. MIT Press, Cambridge, MA, 1992.

[KV91] M. Kearns and U. Vazirani. Introduction to Computational Learning Theory.MIT
Press, Cambridge, MA, 1991.

[Le89] K.-F. Lee. Automatic Speech Recognition: The Development of the SPHINX System.
Kluwer Academic Publishers, Boston, MA, 1989.

[LFL93] T. Li, L. Fang, and K. Q-Q. Li. Hierarchical Classification and Vector Quantization
With Neural Trees.Neurocomputing5:119-139, 1993.

[Lo95] D. Lowe. Radial Basis Function Networks. InThe Handbook of Brain Theory and Neural
Networks, M. A. Arbib, editor, p. 779-782.

[LWYB90] L. Liu, D. C. Wilkins, X. Ying, and Z. Bian. Minimum Error Tree Decomposition.
In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence (UAI-90), 1990.

[LWH90] K. J. Lang, A. H. Waibel, and G. E. Hinton. A Time-Delay Neural Network
Architecture for Isolated Word Recognition.Neural Networks3:23-43, 1990.

140

[LY97] Y. Liu, and X. Yao. Evolving Modular Neural Networks Which Generalise Well. In
Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC-
97), p. 605-610, Indianapolis, IA, 1997.

[Ma89] C. J. Matheus. Feature Construction: An Analytical Framework and Application to
Decision Trees.Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1989.

[Mi83] R. S. Michalski. A Theory and Methodology of Inductive Learning.Artificial
Intelligence, 20(2):111-161, reprinted inReadings in Knowledge Acquisition and Learning, B. G.
Buchanan and D. C. Wilkins, editors. Morgan-Kaufmann, San Mateo, CA, 1993.

[Mi80] T. M. Mitchell. The Need for Biases in Learning Generalizations.Technical Report
CBM-TR-117, Department of Computer Science, Rutgers University, New Brunswick, NJ, 1980,
reprinted inReadings in Machine Learning, J. W. Shavlik and T. G. Dietterich, editors. Morgan-
Kaufmann, San Mateo, CA, 1990.

[Mi82] T. M. Mitchell. Generalization as Search.Artificial Intelligence, 18(2):203-226.

[Mi93] R. S. Michalski. Toward a Unified Theory of Learning: Multistrategy Task-Adaptive
Learning. InReadings in Knowledge Acquisition and Learning, B. G. Buchanan and D. C.
Wilkins, eds. Morgan-Kaufmann, San Mateo, CA, 1993.

[Mi97] T. M. Mitchell. Machine Learning.McGraw-Hill, New York, NY, 1997.

[MMR97] K. Mehrotra, C. K. Mohan, and S. Ranka.Elements of Artificial Neural Networks.
MIT Press, Cambridge, MA, 1997.

[MN83] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and Hall,
London, 1983.

[Mo94] M. C. Mozer. Neural Net Architectures for Temporal Sequence Processing. InTime
Series Prediction: Forecasting the Future and Understanding the Past (Santa Fe Institute Studies
in the Sciences of Complexity XV),A. S. Weigend and N. A. Gershenfeld, editors. Addison-
Wesley, Reading, MA, 1994.

[MP69] M. L. Minsky and S. Papert.Perceptrons: An Introduction to Computational Geometry,
first edition. MIT Press, Cambridge, MA, 1969.

[MR86] J. L. McClelland and D. E. Rumelhart.Parallel Distributed Processing. MIT Press,
Cambridge, MA, 1986.

[My95] P. Myllymäki. Mapping Bayesian Networks to Boltzmann Machines. InProceedings of
Applied Decision Technologies 1995, pages 269-280, 1995.

[Ne92] R. M. Neal. Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo
Method. Technical Report CRG-TR-92-1, Department of Computer Science, University of
Toronto, 1992.

[Ne93] R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods.
Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

141

[Ne96] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, New York, NY,
1996.

[Pe88] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan-Kaufmann, San Mateo, CA, 1988.

[Pe95] J. Pearl. Bayesian Networks. InThe Handbook of Brain Theory and Neural Networks, M.
A. Arbib, editor, p. 149-153.

[Pe97] E. Pérez. Learning Despite Complex Attribute Interaction: An Approach Based on
Relational Operators.Ph.D. thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1997.

[PL98] J. Principé, C. Lefebvre.NeuroSolutions v3.02, NeuroDimension, Gainesville, FL, 1998.
URL: http://www.nd.com.

[Qu85] R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81-106, 1985.

[Ra90] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition.Proceedings of the IEEE, reprinted inReadings in Speech Recognition, A.
Waibel and K.-F. Lee, editors. Morgan Kaufmann, San Mateo, CA, 1990.

[RCK89] J. G. Rueckl, K. R. Cave, and S. M. Kosslyn. Why are “What” and “Where” Processed
by Separate Cortical Visual Systems? A Computational Investigation.Journal of Cognitive
Neuroscience, 1:171-186.

[RH98] S. R. Ray and W. H. Hsu. Self-Organized-Expert Modular Network for Classification of
Spatiotemporal Sequences.Journal of Intelligent Data Analysis, to appear.

[Ri88] J. A. Rice. Mathematical Statistics and Data Analysis.Wadsworth and Brooks/Cole
Advanced Books and Software, Pacific Grove, CA, 1988.

[RK96] S. R. Ray and H. Kargupta. A Temporal Sequence Processor Based on the Biological
Reaction-Diffusion Process,Complex Systems, 9(4):305-327, 1996.

[RNH+98] C. E. Rasmussen, R. M. Neal, and G. Hinton.Data for Evaluating Learning in Valid
Experiments (DELVE). Department of Computer Science, University of Toronto, 1996. URL:
http://www.cs.toronto.edu/~delve/delve.html.

[RN95] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[Ro98] D. Roth. Personal communication, 1998.

[RR93] H. Ragavan and L. A. Rendell. Lookahead Feature Construction for Learning Hard
Concepts. InProceedings of the 1993 International Conference on Machine Learning (ICML-
93),June, 1993.

142

[RS88] H. Ritter and K. Schulten. Kohonen’s Self-Organizing Maps: Exploring Their
Computational Capabilities. InProceedings of the International Conference on Neural Networks
(ICNN-88), p. 109-116, San Diego, CA, 1988.

[RS90] L. A. Rendell and R. Seshu. Learning Hard Concepts Through Constructive Induction:
Framework and Rationale.Computational Intelligence, 6:247-270, 1990.

[RV97] P. Resnick and H. R. Varian. Recommender Systems.Communications of the ACM,
40(3):56-58, 1997.

[Sa89] G. Salton.Automatic Text Processing. Addison Wesley, Reading, MA, 1989.

[Sa97] M. Sahami. Applications of Machine Learning to Information Access (AAAI Doctoral
Consortium Abstract). InProceedings of the 14th National Conference on Artificial Intelligence
(AAAI-97), p. 816, Providence, RI, 1997.

[Sa98] W. S. Sarle, editor.Neural Network FAQ, periodic posting to the Usenet newsgroup
comp.ai.neural-nets, URL: ftp://ftp.sas.com/pub/neural/FAQ.html

[Sc97] D. Schuurmans. A New Metric-Based Approach to Model Selection. InProceedings of
the Fourteenth National Conference on Artificial Intelligence (AAAI-97), p. 552-558.

[Se98] C. Seguin.Models of Neurons in the Superior Colliculus and Unsupervised Learning of
Parameters from Time Series. Ph.D. thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1998.

[Sh95] Y. Shahar. A Framework for Knowledge-Based Temporal Abstraction. Stanford
University, Knowledge Systems Laboratory Technical Report 95-29, 1995. URL:http://www-
smi.stanford.edu/pubs/SMI_Abstracts/SMI-95-0567.html

[SM86] R. E. Stepp III and R. S. Michalski. Conceptual Clustering: Inventing Goal-Oriented
Classifications of Structured Objects. InMachine Learning: An Artificial Intelligence Approach,
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Morgan-Kaufmann, San Mateo,
CA, 1986.

[SM93] B. Stein and M. A. Meredith.The Merging of the Senses. MIT Press, Cambridge, MA,
1993.

[St77] M. Stone. An Asymptotic Equivalence of Choice of Models by Cross-Validation and
Akaike’s Criterion. Journal of the Royal Statistical Society Series B, 39:44-47.

[Th96] S. Thrun.Explanation-Based Neural Network Learning. Kluwer Academic Publishers,
Norwell, MA, 1996.

[TK94] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press,
San Diego, CA, 1984.

[TSN90] G. G. Towell, J. W. Shavlik, M. O. Noordewier. Refinement of Approximate Domain
Theories by Knowledge-Based Neural Networks.In Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI-90), pages 861-866, 1990.

143

[Vi67] A. J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm. IEEE Transactions on Information Theory, 13(2):260-269, 1967.

[Vi98] R. Vilalta. On the Development of Inductive Learning Algorithms: Generating Flexible
and Adaptable Concept Representations.Ph.D. thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1998.

[Wa72] S. Watanabe. Pattern Recognition as Information Compression. InFrontiers of Pattern
Recognition, S. Watanabe, editor. Academic Press, San Diego, CA, 1972.

[Wa85] S. Watanabe.Pattern Recognition: Human and Mechanical, John Wiley and Sons, New
York, NY, 1985.

[Wa98] B. Wah. Personal communication, January, 1998.

[Wi93] P. H. Winston. Artificial Intelligence, 3rd Edition. Addison-Wesley, Reading, MA, 1993.

[WM94] J. Wnek and R. S. Michalski. Hypothesis-Driven Constructive Induction in AQ17-HCI:
A Method and Experiments.Machine Learning, 14(2):139-168, 1994.

[Wo92] D. H. Wolpert. Stacked Generalization.Neural Networks, 5:241-259, 1992.

[WCB86] D. C. Wilkins, W. J. Clancey, and B. G. Buchanan,An Overview of the Odysseus
Learning Apprentice.Kluwer Academic Press, New York, NY, 1986.

[WS97] D. C. Wilkins and J. A. Sniezek. DC-ARM: Automation for Reduced Manning.
Knowledge Based Systems Laboratory Technical Report UIUC-BI-KBS-97-012. Beckman
Institute, UIUC, 1997.

[WZ89] R. J. Williams and D. Zipser. A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks.Neural Computation1(2):270-280.

[ZMW93] X. Zhang, J. P. Mesirov, and D. L. Waltz. A Hybrid System for Protein Secondary
Structure Prediction. Preprint, Journal of Molecular Biology, 1993.

144

Curriculum Vitae

William Henry Hsu was born on October 1, 1973 in Atlanta, Georgia. He graduated in June,

1989 from Severn School in Severna Park, Maryland, where he was a National Merit Scholar. In

May, 1993, he was awarded the Outstanding Senior Award from the Department of Computer

Science at the Johns Hopkins University in Baltimore, Maryland, and received dual bachelor of

science degrees in Computer Science and Mathematical Sciences, with honors. He also received a

concurrent Master of Science in Engineering from the Johns Hopkins University in May, 1993.

After entering the graduate program in Computer Science at the University of Illinois at Urbana-

Champaign, he joined the research group of Professor Sylvian R. Ray in 1996. He was awarded

the Ph.D. degree in 1998 for his work on time series learning with probabilistic networks, an

approach integrating constructive induction, model selection, and hierarchical mixture models for

learning from heterogeneous time series. He has presented research papers at various scientific

conferences and workshops on artificial intelligence, intelligent systems for molecular biology,

and artificial neural networks. His research interests include machine learning and data mining,

time series analysis, probabilistic reasoning for decision support and control automation, neural

computation, and intelligent computer-assisted instruction.

