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ABSTRACT

The algorithm selection problem aims at selecting the best algorithm for a given

computational problem instance according to some characteristics of the instance. In

this dissertation, we first introduce some results from theoretical investigation of the

algorithm selection problem. We show, by Rice’s theorem, the nonexistence of an

automatic algorithm selection program based only on the description of the input

instance and the competing algorithms. We also describe an abstract theoretical

framework of instance hardness and algorithm performance based on Kolmogorov

complexity to show that algorithm selection for search is also incomputable. Driven

by the theoretical results, we propose a machine learning-based inductive approach

using experimental algorithmic methods and machine learning techniques to solve the

algorithm selection problem.

Experimentally, we have applied the proposed methodology to algorithm selection

for sorting and the MPE problem. In sorting, instances with an existing order are

easier for some algorithms. We have studied different presortedness measures, de-

signed algorithms to generate permutations with a specified existing order uniformly

at random, and applied various learning algorithms to induce sorting algorithm se-

lection models from runtime experimental results. In the MPE problem, the instance

characteristics we have studied include size and topological type of the network, net-

work connectedness, skewness of the distributions in Conditional Probability Tables

(CPTs), and the proportion and distribution of evidence variables. The MPE algo-

rithms considered include an exact algorithm (clique-tree propagation), two stochastic

sampling algorithms (MCMC Gibbs sampling and importance forward sampling), two

search-based algorithms (multi-restart hill-climbing and tabu search), and one hybrid

algorithm combining both sampling and search (ant colony optimization).

Another major contribution of this dissertation is the discovery of multifractal

properties of the joint probability distributions of Bayesian networks. With sufficient



asymmetry in individual prior and conditional probability distributions, the joint

distribution is not only highly skewed, but it also has clusters of high-probability

instantiations at all scales. We present a two phase hybrid random sampling and

search algorithm to solve the MPE problem exploiting this clustering property. Since

the MPE problem (decision version) is NP -complete, the multifractal meta-heuristic

can be applied to solve other NP -hard combinatorial optimization problems as well.



Preface

Hereby I would like to record the journey of my dissertation research that started

3 and a half years ago when I joined Dr. Hsu’s KDD group at K-State. I remember

the first paper he handed to me was Charniak’s “Bayesian networks without tears”

[Cha91]. I found my interests in uncertain reasoning using Bayesian networks soon

after I read the paper and implemented a Bayesian network learning algorithm, K2.

When the time came for me to choose a dissertation topic, I knew that my research

was going to be in the area of artificial intelligence and Bayesian networks. Since

another group in our department was doing some real-time research, I thought real-

time artificial intelligence might be a good topic to work on. After consulting with

Dr. Hsu and other committee members, I finally set my topic to real-time AI.

At that time some of my committee members had managed to open a seminar

class on “Topics in Real-time Artificial Intelligence” in the spring semester of 2001.

At the class we were requested to present a related paper and the one I chosen

was “On a Distributed Anytime Architecture for Probabilistic Reasoning” by Santos

[SSW95]. After presenting that paper, I became more interested in the study of

real-time Bayesian network inference. I started reviewing various Bayesian network

inference algorithms and I realized that under real-time constraints the selection of

proper algorithms became very crucial, because different algorithms’ performances

vary differently as properties of the input instance change. Also I noticed that in real

world problem solving, one main reason that experts in any domain are called experts

is because they are all very good at selecting the best problem-solving technique

quickly. Therefore I focused my attention on the algorithm selection problem for

Bayesian network inference.



Thus, I formed the goal of building an algorithm selection system that can act as

an algorithm selection expert for selecting the best algorithm for a particular input

instance so as to gain the best overall performance. Somehow I formed the idea of

using another Bayesian network sitting at the meta-level as the algorithm selection

reasoner to do the job since a Bayesian networks are graphical models for learning

and reasoning in probabilistic expert systems. It has all components of an intelligent

system: representation, learning, and inference. Many thanks to Dr. Hsu for bringing

me to IJCAI-2001 and UAI-2001 in Seattle so that I got a chance to directly talk to

these first-class researchers in the field. At UAI-2001 I was particularly impressed

and encouraged by Eric Horvitz’s paper [HRG+01] on applying a Bayesian approach

to tackling hard computational problems. Since the idea was basically the same as

the one I came up with. It used a Bayesian network as the meta-reasoner to monitor

and control the processes of hard problem solving process. I have forgot exactly what

question I asked Eric after his talk, but I do remember I became more confident on

my research direction afterwards.

I started more literature survey on the related fields as soon as I came back from

Seattle. First I noticed that not all input instances are created equal. Some in-

stances occur in real world applications more frequently, while others exists only in

theoretical world. Correspondingly, these so-called “real-world” instances should be

treated specially. At the same time I started reading papers on “No Free Lunch The-

orems”, which basically state that without any structural assumptions on a search or

optimization problem, no algorithm can perform better on average than blind search

(thus than any other algorithms). Therefore in order to solve any problem better, we

need an adapted algorithm, an algorithm that is able to take into consideration the

structural specificities of the problem. All of these had motivated me to study and

build the algorithm selection meta-reasoner, which can assign the best algorithm to

the input instance by examining and reasoning the instance’s structural property.

The meta-reasoner has to gain his knowledge from somewhere. There are usual

two ways to do it: analytically (deductive) and experimentally (inductive). Investiga-



tions into the theoretical direction led me to the fields of computational complexity,

computability, Kolmogorov complexity, and GA-hardness. These formed the basis

of the theoretical aspects of my dissertation research. Discussions with Dr. Howell

have clarified many of my misconceptions. The pure analytical approach to algorithm

selection was proven to be a dead end when we realized that by Rice’s theorem it is

impossible to have an automatic checker (a program or a Turing machine) that can

read two algorithms and decide which is better, i.e., the problem is undecidable in

general. This is easy to understand because Turing has showed [Tur36] that we can

not even decide if an algorithm actually halts (the halting problem). Then I turned

to the inductive direction without much doubt.

At UAI02 at Edmonton, I managed to co-chair a workshop on real-time decision

support and diagnosis systems with Dr. Hsu, Horvitz and Santos. At the workshop

I had chance to talk to Fabio Cozman on my research. I also had a good talk

with Michael Horsch (at Saskatchewan) on No Free Lunch Theorems and some other

stuff. These all enhanced my confidence on experimental approaches. Later Fabio

and his graduate student Jaime made an open source Bayesian network generator

that proved very helpful to my experiments on Bayesian network inference. I also

presented my thesis proposal at AAAI02’s Doctoral Consortium. Leslie P. Kaelbling

(at MIT) was my assigned tutor. After I presented my talk she asked me: “Why

do you use a Bayesian network? A decision tree might work just as well.” And I

agreed with her. Later the focus of my thesis research had been switched a little from

the original Bayesian approach to machine learning based approach in which some

other models (Decision tree and naive Bayes) were also studied and compared with

Bayesian network. I also met James Park (at UCLA) at Edmonton. His work on

MPE and MAP inspired me a lot. Later he even allowed me to share his source code,

although I have never been able to make it executable.

The multifractal analysis part of this research was mainly inspired by Marek J.

Druzdzel’s paper on the skewness of the joint probability space of Bayesian networks.

To verify his results, I generated the joint probability and plotted it in Excel. As I



was looking at the shape of the joint distribution, it reminded me of the concept of

fractal. This led to the discovery of the multifractal property of the joint space and

its usefulness as a meta-heuristic to design algorithm for finding the most probable

explanation. Druzdzel’s paper [Dru94] also led me to the investigation of CPT skew-

ness as a MPE instance feature to help select the best algorithm. It turned out that

skewness is among one of the most important features in differentiating the algorithm

performance space.

Coming back from Edmonton, I had a clearer picture in my mind of what I should

do. The next two semesters have been a busy time for me. Implementing algorithms,

running experiments, collecting and analyzing data, and finally, writing the thesis.

The first draft was finished in early May, 2003.

My central goal has been to build the algorithm selection meta-reasoner for real-

time Bayesian network inference. This effort has culminated in the development of a

machine learning-based inductive methodology to build general, meta-level intelligent

algorithm selection systems. However, many problems still remain open. For example,

there could be many types of meta-level reasoners. Do we need a meta-meta-level

reasoner to reason about the selection of meta-level reasoner? How much efforts

should we put into the meta-level reasoning? When will thinking too much be a

problem? I have grown to appreciate the true complexity and challenge of building

artificial intelligent system like this task. Now I find that it is exactly that challenge

which stimulates me to continue this research.

Now I have finished recording this long story of my Ph.D. research. I hope someday

somebody, who has to go through this process as I have been doing, will find it worth

reading.
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Chapter 1

Introduction

Given a computational problem, there usually exist many different algorithms to

solve it exactly or approximately. Different algorithms often perform better on dif-

ferent classes of problem instances. The algorithm selection problem [Ric76] asks the

following question: which algorithm should we select to solve this instance?

The algorithm selection problem is important because of both theoretical and

practical reasons. Computer scientists seek a better theoretical understanding to

problem instance hardness and algorithm performance so as to deliver better algo-

rithms for the given computational task. In practice, it helps us gain more efficient

computations to solve the problem in hand. This is especially crucial for some real-

time applications that are under the pressure of some hard or soft computational

deadlines.

This dissertation mainly presents a machine learning-based approach to solve the

above-mentioned problem and applies it to sorting and finding the Most Probable

Explanation (MPE), which is a probabilistic inference problem. In this chapter, we

give a brief introduction on motivations and directions of this work. We also describe

our thesis and the organization of this dissertation.

1



1.1 Introduction and Motivations

1.1.1 Analytical versus Experimental Approaches

Algorithm comparison and algorithm selection are central topics in computational

complexity theory, which studies the amount of resources needed in solving compu-

tational problems. The field has traditionally been divided into algorithm analysis,

problem complexity, and complexity classes. Algorithm analysis studies the amount

of resources an algorithm consumes. Problem complexity studies the amount of re-

sources needed to solve a computational problem. The theory of complexity classes

studies the classification of problems according to their intrinsic computational com-

plexity.

The amount of resources needed by an algorithm or a problem is usually measured

by functions of the length (size) of input instances, i.e., the time complexity functions.

We know in practice that instances of the same size may require different amounts of

resources because of their differences in some other characteristics. For example, an

almost ordered permutation can be sorted by Insertion Sort algorithm in linear time

but it takes quadratic time for Insertion Sort to sort a totally unordered permutation.

Hence we need to study problem instance characteristics other than just size in order

to select the best algorithm.

Classical computational complexity theory mainly relies on analytical approaches

such as worst-case analysis and average-case analysis. Worst-case analysis often works

well and provides a good basis for algorithm selection. However, there are still some

cases where it fails. Consider Quick Sort, for example. By worst-case analysis, Quick

Sort has a quadratic time complexity, yet it is fast in practice in most cases. Another

example is the Simplex algorithm for solving linear programming problem. Its worst-

case time complexity is exponential, but it performs extremely well in real world

applications. Also, worst-case analysis treats all instances of the same size collectively

as a whole although they may be very different in terms of features other than the

problem size. Average-case analysis is often difficult to apply because it requires a
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reasonable estimate of all instances’ probabilities. In most situations, this is simply

infeasible.

To distinguish the varying resource requirements of instances that have the same

size but are different in other features, we need to move from problem complexity to

instance complexity. There are at least three ways to deal with this issue. The first

one defines instance complexity of decision problems using Kolmogorov complexity

[OKSW94]; i.e., it is defined as the size of the shortest program to solve the deci-

sion problem. The second one defines instance complexity by restricting the allowed

algorithms. For example, “Instance p1 is harder than p2 if it takes more time for

a specified algorithm A to solve p1”. The third method considers instance classes

instead of single instances [Man85]. It defines a subproblem of the original prob-

lem by some intuitive criteria of instance easiness (or hardness) and then studies the

worst-case complexity of the subproblem. Algorithms are designed and analyzed on

these subproblems, with resource requirements increasing smoothly when moving to

larger subproblems. The resulting algorithm is called optimal to the instance hardness

measures.

Although the first method using Kolmogorov complexity has produced some in-

teresting results, the results are mainly along the line of complexity classes and do

not help much on practical algorithm selection. The second method is not very at-

tractive because it depends on a particular algorithm. The third method has made a

lot of progresses in designing adaptive sorting algorithms that are optimal to many

measures of the existing orders in a sorting instance. Because of its analytical na-

ture, this method is easy for simple problems like sorting, but hard to be applied

to arbitrary NP -hard optimization problems, which are the most important ones in

practice. Furthermore, although the third method provides a way to design adaptive

algorithms that are optimal for some measures, it is usually impossible to design such

an algorithm that are optimal for all measures. There is also an algorithm selec-

tion problem for different adaptive algorithms. This dissertation follows the third

method of considering instance classes instead of single instances, but we rely more
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on experimental approaches rather than analytical ones.

1.1.2 Problem Instance Characteristics and Algorithm Per-
formance

This research was partly motivated by the observation that some easy-to-compute

problem features can be used as good indicators of some algorithm’s performance

on hard instances. This knowledge can be utilized to help select the best algorithm

in order to gain more efficient overall computations. Consider the sorting example

again. It is well known that if the permutation is nearly sorted, then the Insertion

Sort algorithm can sort it in linear time although the algorithm’s worst-case time

complexity is O(n2) and the computational complexity of sorting is O(n log n). In the

community of NP -hard optimization problem-solving, researchers have long noticed

that the NP -complete result is just a worst-case result; i.e., not all instances are

equally hard [CKT91]. Algorithms that exploit some features of the input instances

can perform on the particular class of instances better than the worst-case scenario. In

light of this, two of the main directions of this research are to study different instance

features in terms of their goodness as a predictive measure for some algorithm’s

performance and to investigate the relationships between different instance features

and different algorithms’ performance. We aim to develop a unified machine learning-

based methodology to automate the process of knowledge discovery and reasoning

with regard to solving the algorithm selection problem.

1.1.3 Machine Learning Models for Algorithm Selection

Another motivation of this work came from the inspiration of automating and mim-

icking human expert’s algorithm selection process. In many real world situations,

algorithm selection is done by hand by some experts who have a good theoretical

understanding to the computational complexities of various algorithms and are very

familiar with their runtime behaviors. The automation of the expert’s algorithm

selection process thus has two aspects: the analytical aspect and the experimental
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aspect. Theoretically, the first aspect is hard to be automated and compiled into a

program. We will examine this in detail in chapter 3. Comparatively, automating the

experimental aspect is more feasible because of the progresses that have been made in

experimental algorithmic [Joh02], machine learning [Mit97], and uncertain reasoning

techniques [Pea88].

The difficulty of automatic algorithm selection is largely due to the uncertainty

in the input problem space, the lack of understanding to the working mechanism of

the algorithm space, and the uncertain factors of implementations and run-time en-

vironments. This is especially true for NP -hard problems and complex, randomized

algorithms. From the viewpoint of expert systems and machine learning, the auto-

matic algorithm selection system acts as an “intelligent meta-level reasoner” that is

able to learn the uncertain knowledge of algorithm selection from its past experiences

and use the learned knowledge (models) to reason on algorithm selection for the input

instance in order to make the right decision.

1.2 Thesis Statement

In this dissertation, we first develop some theoretical results on automatic algorithm

selection. We show, by Rice’s theorem, that there does not exist a program to auto-

matically select the best algorithm based only on the descriptions of the input instance

and these algorithms. We also present a general, abstract framework of problem hard-

ness and algorithm performance for search based on Kolmogorov complexity in order

to show the difficulty of analytically deriving the algorithm’s performance from the

input instance. Driven by these theoretical results, we propose a machine learning-

based approach to build automatic algorithm selection systems using experimental

methods and machine learning techniques.

We then choose two problems, sorting and finding the MPE as our test cases.

These are chosen as representatives of two important complexity classes: P and NP -

complete. Sorting is an easy but fundamental problem to computer science in gen-

eral. The MPE problem is interesting because it is an important inference problem
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in Artificial Intelligence (AI) and probabilistic reasoning using Bayesian networks.

The decision version of the MPE problem is also NP -complete; many tasks of inter-

ests, for example SAT and Vertex Covering, can be converted to the MPE problem

[Coo90, Shi94]. In this sense, the MPE problem is representative of the NP -hard

combinatorial optimization problems.

For both problems, we apply the following procedures:

1. Identify a list of candidate algorithms for solving the problem.

2. Identify a list of feasible instance characteristics using domain knowledge.

3. Generate a representative set of test instances with different characteristic values

settings uniformly at random.

4. Run the candidate algorithms on these elaborately-designed instances and col-

lect the performance data to produce the training datasets.

5. Apply machine learning techniques on training data to induce a predictive al-

gorithm selection model (decision tree, naive Bayes classifier, or a Bayesian

network) out of it.

6. For a new instance, analyze (quickly) its characteristic values and use the

learned models to infer (classification) the best algorithm to solve it.

In studying the MPE problem, we have also discovered an important multifractal

property of the Joint Probability Distributions (JPDs) of Bayesian networks. Specif-

ically, with sufficient asymmetry in individual prior and conditional probability dis-

tributions, the joint distribution is not only highly skewed, but it also has clusters

of high-probability instantiations at all scales. Based on this clustering property,

we have designed a two-phase hybrid Sampling-And-Search algorithm for solving the

MPE problem in Bayesian networks. Since finding the MPE is NP -complete, we

expect that this multifractal meta-heuristic can be applied to solving other NP -hard

combinatorial optimization problems as well.

In summary, the thesis of this dissertation is three-fold:
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1. Theoretically, automatic algorithm selection is impossible if only based on the

description of the input instance and the algorithm.

2. A machine learning-based approach using experimental methods and machine

learning techniques can be used to build automatic algorithm selection systems

that can select the most suitable algorithm according to the input instance’s

characteristics.

3. The JPDs of Bayesian networks with skewed CPTs have some multifractal prop-

erties and this can be used as a meta-heuristic to design new search algorithms

for solving NP -hard optimization problems.

1.3 Organization

The organization of this dissertation is as follows:

Chapter 1 gives a brief introduction of the main themes of this dissertation. The

research problem is clarified, main motivations and directions are described, the three-

fold thesis is stated, and the organization of the dissertation is presented.

In chapter 2, we introduce concepts and background materials from related areas

and their relationship with this research. These areas include computational com-

plexity theory, computability theory, algorithmic information theory, Kolmogorov

complexity, main issues in experimental algorithmics, various machine learning tech-

niques, probabilistic learning and reasoning models, and so on. Formal definitions

are given and related works are surveyed. One goal of this dissertation is to unify

some of the concepts and developments from different areas for solving the algorithm

selection problem.

We then present the main theoretical results in chapter 3. Rice’s theorem is ap-

plied to illustrate the infeasibility of building an automatic algorithm selection system

based only on the analytical methods. Also, an abstract, general framework of prob-

lem instance hardness and algorithm performance for search based on Kolmogorov

complexity is developed to discuss the related issues. These results are then applied to
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the study of GA-hardness. Driven by the infeasibility of analytical methods, we turn

to the machine learning-based inductive approach, which is experimental in nature

and exploits various machine learning techniques.

Chapter 4 describes our discovery of the multifractal property of joint probability

distributions of Bayesian networks. Also, an algorithm for finding the MPE based

on the multifractal meta-heuristic is developed and the experimental results are pre-

sented.

Chapter 5 reviews major issues in machine learning and describes the proposed

machine learning-based approach for algorithm selection.

In Chapter 6, we apply the proposed approach machine learning-based to algo-

rithm selection for sorting. Different presortedness measures are studied. A set of

random generation algorithms are presented. The algorithmic experimental design

is described and various machine learning algorithms are applied to induce the algo-

rithm selection model from the experimental data. The overall performance of the

algorithm selection system is also evaluated.

Chapter 7 applies the machine learning-based methodology to algorithm selection

for the MPE problem. Several MPE instance characteristics are discussed and a

random instance generation algorithm is described. Again, various machine learning

algorithms are applied to induce the algorithm selection model from the experimental

data and the results evaluated.

Chapter 8 summarizes the results of this dissertation and points out some open

questions and future directions.
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Chapter 2

Background

Automatic algorithm selection is at the crossroads of many fields including computa-

tional complexity theory, computability theory, algorithmic information theory, exper-

imental algorithmics, machine learning, and artificial intelligence. In this chapter, we

review concepts from related areas. We present the formal definitions and how they

are related to this research. These concepts are being introduced partly to make the

thesis more self-contained and, more importantly, to set up the formal notations that

will be used throughout this thesis. Also, related works are surveyed in the end of

this chapter.

2.1 Theoretical Aspects

In this section, we review concepts in computational complexity theory, computability

theory, and algorithmic information theory. Complexity theory provides fundamental

concepts for algorithm selection. Results in computability theory and algorithmic

information theory will be used in chapter 3 to derive our theoretical results on the

undecidability of automatic algorithm selection.

2.1.1 Computational Complexity Theory

Computational complexity theory [GJ79, Pap94] is a central field of computer science.

The main goal of this field is to classify computational problems according to their

intrinsic computational difficulty. It provides the basics for solving the automatic
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algorithm selection problem. The central question of complexity theory is: Given a

problem, how much computing resources do we need to solve it?

Problem, Instance and Algorithm

We begin by defining terms. We distinguish a problem from an instance. Informally,

a problem is a general question to be answered, usually having several parameters. A

problem is described by giving a configuration of all its parameters and a statement

of what properties the answer or solution is required to satisfy. An instance of a

problem is obtained by specifying particular values for all of its parameters. Formally,

a problem is a total function on strings of an alphabet, such as {0, 1}. Let {0, 1}∗ or
∑∗ represent the set of all finite strings made up of 0s and 1s. From [Joh90], we have

the following definition:

Definition 1 (Problem and Instance) A problem is a set X of ordered pairs (I, A)

of strings in {0, 1}∗, where I is called an instance. A is called an answer for that in-

stance, and every string in {0, 1}∗ occurs as the first component of at least one pair.

As an example, consider the REACHABILITY problem on a directed graph:

REACHABILITY

INSTANCE: A directed graph G = (V, E) and two nodes v1, v2 ∈ V .

QUESTION: Is there a path from v1 to v2?

ANSWER: “Yes” if there is a path. Otherwise, “no”.

Like all problems, the REACHABILITY problem has an infinite set of possible

instances. For example, for the graph as shown in Figure 2.1, we want to ask if there

exists a path between node A and E.

Notice that the REACHABILITY problem asks a question that requires a “yes” or

“no” answer. Such problems are called decision problems. Besides decision problems,

there are counting problems, search problems, optimization problems, etc. Counting
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Figure 2.1: An Instance of the REACHABILITY Problem

problems are functions in which all answers are nonnegative integers. Search problems

are string relations. Optimization problems are special kinds of search problems in

which the objective is to find the best (maximum or minimum) of all possible solutions

defined by an objective function.

Decision problems are a particular important class of problems. Most complexity

classes are defined on decision problems because decision problems have a very natural

formal counterpart called languages, which provide a suitable object to study in a

mathematically precise theory of computation.

Definition 2 (Language) A language is any subset of {0, 1}∗.

If L is a language, then the corresponding decision problem RL is {(x, yes) : x ∈
L} ∪ {(x, no) : x /∈ L}. Given a decision problem R, the corresponding language is

L(R) = {x ∈ {0, 1}∗ : (x, yes) ∈ R}. A problem is a language that is a set of strings

over a finite alphabet. An instance of the problem is a string.
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In computer science, to solve a problem means to find an algorithm that solves

all instances of the problem (assuming enough time, space, and other resources are

provided). The goal of any algorithm that solves problem X is as follows: given an

instance x, produce an answer a such that (x, a) ∈ X.

Algorithms are general, mechanical procedures that can be followed step-by-step

to solve a problem. Formally, algorithms are defined on a model of computation such

as Turing machines (TMs) [GJ79, Pap94]. There are many variants of Turing ma-

chines. In this thesis, we will only consider Deterministic Turing machines (DTMS)

and Nondeterministic Turing machines (DTMS). First, let us look at DTMs. A DTM

is composed of an infinite tape bounded on the left, a read-write tape head, and a

finite control unit.

Definition 3 (Deterministic Turing Machine) A DTM is a tuple

M = (Q, Γ,
∑

, δ, q0, B, F )

where Q is the finite set of states, Γ is the the finite set of allowable tape symbols,

B is the blank symbol (B ∈ Γ),
∑

is the set of input symbols (
∑ ∈ Γ, B /∈ ∑

), δ

is a transition function Q × Γ → Q × Γ × {Left, Right, Stay}, q0 is the start state

(q0 ∈ Q), F is the set of final states (F ⊆ Q).

The machine starts from q0, takes a step according to δ, changes its state, prints

a symbol, and advances the cursor; it then takes another step, and another, and so

on. For a given input x, if a machine M halts at the final state “yes”, we say that M

accepts x; if it halts at the final state “no”, then it rejects x; if it halts at the final

state h, the output will be the string of M at the time of halting. It is possible that

the machine never halts.

Turing machines provide an ideal computational model to solve string-related

problems; i.e. computing string functions and accepting and deciding languages. Let

L be a language. Let M be a Turing machine such that for any string x, if x ∈ L,

then M(x) = “yes”, and if x /∈ L, then M(x) = “no”. Then we say that M decides

L. If L is decided by some Turing machine M , then L is called a recursive language.
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We say that M accepts L whenever, for any string x, if x ∈ L, then M(x) =

“yes”; but if x /∈ L, then M might halt, or it might continue forever without halting.

If L is accepted by some Turing machine M , then L is called a recursive enumerable

language.

Turing machines can be thought of as algorithms for solving string-related prob-

lems. In order to solve problems using a Turing machine, we first need to encode

the problems into strings. It should be clear that any “finite” mathematical ob-

jects of interest can be represented by a finite string over an appropriate alphabet.

Throughout this thesis, we shall move freely between strings and problem instances

and algorithms without explicitly saying so, assuming that any problem instances

and algorithms can be encoded into some strings of 0s and 1s. We assume the en-

coding scheme is “reasonable” in the sense of Garey and Johnson [GJ79]. Once we

have fixed the representation, an algorithm for a decision problem can be found by

simply creating a Turing machine that decides the corresponding language. That is,

the Turing machine accepts if the input represents a “yes” instance of the problem,

and rejects otherwise.

A Turing machine is an exceedingly simple yet amazingly powerful model of com-

putation. As Turing claimed [Tur36], any process that can be naturally called an

effective procedure is realized by a Turing machine. This is known as the famous

Church-Turing Thesis: everything computable is computable by a Turing machine.

Efficient Computability and the Complexity Class P

Having defined the notion of algorithms as Turing machines, we now consider the time

complexity of algorithms and problems which are central to the algorithm selection

problem.

The time used in the computation of a DTM program M on an input x of length

n is the number of steps occurring in the computation up until a halt state is entered.

For a DTM program M that halts for all inputs x ∈ ∑∗, its time complexity is defined

as follows:
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Definition 4 (Time Complexity) TM(n) = max{t(n) : ∃x ∈ ∑∗, |x| = n, such

that M takes time t(n) on x}.

From the definition, we can see that the time complexity function of an algorithm

expresses its time requirements by giving, for each possible input length n, the largest

amount of time needed by the algorithm to solve a problem instance of that size. In

this sense, it is a worst-case analysis.

Different algorithms have different time complexities. Particularly, computer sci-

entists have realized that there is a significant distinction between polynomial time

algorithms and exponential time algorithms. The time complexity function f(n) for

a polynomial time algorithm can be bounded by some polynomial function p(n); i.e.,

there exists a constant c such that f(n) ≤ cp(n) for all n ≥ 0. An exponential time

algorithm cannot be so bounded and has an exponential time complexity function.

Researchers associate efficient algorithms with those that terminate within time that

is polynomial in the length of the input. An algorithm is called “efficient” if it is a

polynomial time algorithm. Exponential time algorithms are considered as “ineffi-

cient”.

One reason for ruling out exponential rates is that the known Universe is too

small to accommodate exponents as pointed out in [Lev86]. It is about 15 billion

light years ∼ 1061 Planck Units wide. A system of À R1.5 particles packed in R

Planck Units radius collapses rapidly, be it Universe-sized or a neutron star. So the

number of particles is < 1091.5 ∼ 2304 ¿ 444 ¿ 5!!. Another reason is because of

computer’s physical limitations [Raw92]. No computer can perform more than about

1015 switches per second. Beyond that, the frequency of visible lights, the energy

needed for the switching, will break the chemical bonds holding solids together. Now

we are already in the 109 operations per second range, so we can expect at best a

million-fold speedup. But 2n grows by a factor of better than a million whenever n

increases by 20. Furthermore, in theory, nothing can happen faster than about 1023

seconds, which is the time light takes to cross the diameter of a proton. 1023 is only

one hundred million times faster than 1015, and 2n eats that up whenever n increases
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by 27.

The intrinsic complexity of a computational problem is measured by the complex-

ity of the best algorithm that has been found to solve it so far. Hence, a problem

is considered as “tractable” if there exists a polynomial algorithm to solve it. In

contrast, a problem is “intractable” if it is so hard that no polynomial algorithm can

possibly solve it. The notion of tractability is formally captured by the complexity

class P .

Definition 5 (The Complexity Class P) The class of languages (decision prob-

lems) that can be solved by a polynomial time deterministic Turing machine.

A wide range of problems are known to be in P , and researchers are continually

attempting to identify more members. Perhaps the most significant addition to the

membership list recently is the AKS algorithm [AKS02] for primality test. The com-

plexity of AKS algorithm is Ω((log n)12f(log log n)) time where f is a polynomial,

which means the time it takes to run the algorithm is at most a constant times the

number of digits to the twelfth power times a polynomial evaluated at the log of the

number of digits.

Algorithm selection for problems in P is not so badly needed comparing to other

much harder problems because basically all candidate algorithms are considered as

efficient. However, it is still important for some crucial applications that require

optimal computations. Also, although they are all polynomial time algorithms, no

one is best for every situation. Thus it is of highly theoretical importance to be able

to identify the best algorithm for a given task. In this thesis we shall use sorting as

a case study of algorithm selection for P problems.

NP-Completeness and Intractability

We have shown that P represents the class of problems that can be solved in poly-

nomial time by a deterministic Turing machine. Researchers have also identified in

practice another large class of problems that can be verified in polynomial time (by

15



a deterministic Turing machine). There is no known deterministic algorithm that

can solve this class of problems in polynomial time. But if somebody claimed for a

given instance of the problem that the answer is “yes”, then there exists a polyno-

mial time algorithm to check or verify the claimed answer. To capture this notion of

polynomial time verifiability, we introduce the definition of Nondeterministic Turing

machines (NDTMs) and the complexity class of NP as follows:

Definition 6 (Nondeterministic Turing Machine) A Turing machine that has

more than one next state for some combinations of contents of the current input sym-

bol and current state. An input is accepted if any move sequence leads to acceptance.

At the first glance, NDTM seems like an ill-defined concept since we have not

specified what the machine should do when confronted with two or more possible

transition choices. In this case, the machine takes any one of the available choices. A

NDTM answers “yes” to a decision problem if any possible sequence of choices leads

the machine to end up in a “yes” state, and answers “no” if every sequence of choices

leads it to end up in “no” state or to not halt. Another way of understanding NDTM

is seeing it as a DTM with an additional guessing head. When “solving” a problem,

it first guesses an answer, then checks it. For a given input x, any NDTM program

will have many possible computations, one for each possible guess. We say that a

NDTM accepts x if at least one of these is an accepting computation; i.e., halts at

the “yes” state. Using NDTM we can define the complexity class of NP as follows:

Definition 7 (The Complexity Class NP ) The class of languages (decision prob-

lems) that can be accepted by a polynomial time nondeterministic Turing machine.

Clearly, a NDTM can solve any problem that a DTM can solve because DTMs are

special cases of NDTMs. A natural question is whether or not there are any problems

that NDTMs can solve but DTMs can not solve. This is the most important open

problem in theoretical computer science; i.e., the P versus NP problem [Coo00].

Among all problems in NP , NP-complete problems are the hardest ones because if

you can solve any single NP-complete problem in polynomial time, then all problems

16



in NP can be solved efficiently; i.e. P = NP . To make the notion more precisely, we

need to introduce the concepts of reduction and completeness [GJ79].

Definition 8 (Reduction) We say that language L1 is reducible to L2 if there is

a function R from strings to strings such that for all input x, the following is true:

x ∈ L1 if and only if R(x) ∈ L2. R is called a reduction from L1 to L2.

To make it more meaningful, we usually require R to be computable by a deter-

ministic Turing machine in space Ω(log n) and time Ω(p(n)) where p(n) is polynomial

[Pap94].

Reduction is transitive. If R is a reduction from language L1 to L2 and R′ is a

reduction from L2 to L3, then the composition R · R′ is a reduction from L1 to L3.

This fact orders problems with respect to their difficulty. We shall be particularly

interested in the problems at the end of this chain.

Definition 9 (Completeness) Let C be a complexity class, and let L be a language

in C. L is C-complete if any language L′ ∈ C can be reduced to L.

Complete problems are an extremely central concept and tool for complexity the-

ory. They capture the essence and difficulty of a complexity class. NP -complete

problems are complete problems of class NP . The SATISFIABILITY problem is the

first problem that was proven to be NP -complete by Cook in 1971 [Coo71]. It is

specified as follows:

SATISFIABILITY (SAT)

INSTANCE: A set of boolean variables V and a collection of clauses C over V .

QUESTION: Is there a satisfying truth assignment for C?

The famous Cook’s Theorem is stated as follows:

Theorem 1 Cook’s Theorem SAT is NP-complete.
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The proof of Cook’s theorem is done by transforming a SAT problem into a non-

deterministic Turing machine. Therefore, if we can solve SAT quickly, we can find

solutions to nondeterministic Turing machines quickly. By the definition of NP , any

NP problem can be solved by a nondeterministic Turing machine in polynomial time.

So in turn if we can solve SAT quickly, we can solve any NP problem quickly. This

proves that SAT is NP -complete.

Having one concrete NP -complete problem in hand, people have found many

other NP-complete problems by reducing them to SAT. The proof of a problem A

to be NP -complete consists of two steps. First, prove it to be in NP . Second,

prove that some NP -complete problem B reduces to A. Thousands of problems

from various applications, such as TSP, VERTEX COVER, CLIQUE, PARTITION,

HAMILTONIAN CIRCUIT, and so on, have been shown to be NP -complete since

SAT [GJ79].

Recall that if we can solve any NP-complete problem in polynomial time, then we

show P = NP . Conversely, if we can prove P = NP , then all NP-complete problems

can be solved efficiently. Unfortunately, this is very unlikely to be true although it

is possible. Most people believe that P 6= NP , but nobody has been able to either

prove it or disprove it so far. An aspect of the importance of NP -completeness is this:

once we have shown that our problem is NP-complete, it seems reasonable to direct

our efforts to the many alternative approaches available, for example, developing

approximation algorithms, studying special cases, analyzing the average performance

of algorithms, developing randomized algorithms, resorting to heuristic methods, and

so on.

NP-hard Optimization Problems

So far we have restricted our discussions to decision problems for defining complexity

classes such as P and NP . In real world applications, many practical problems

are search problems and optimization problems. A search problem consists of a set of

instances and, for each instance I, a set of solutions S(I). An algorithm is said to solve
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a search problem if, given any input instance I, it returns the answer “no” whenever

S(I) is empty and returns some solution s ∈ S(I) otherwise. An optimization problem

is a special kind of search problem. Like search, it also consists of a set of instances

and a set of solutions S(I) for each instance I. Additionally, for each instance I and

its candidate solution δ, an objective function that assigns a positive rational number

m for each pair (I, δ) is defined. Each optimization problem is either a minimization

or maximization problem. Correspondingly, the optimal solution has the minimum or

maximum m value among all possible solutions. If a problem is NP -complete, then

the corresponding search or optimization problem is usually NP -hard, which means

at least as hard as the NP -complete problem. The notion of NP -hard is formally

defined by Turing Reduction and the Oracle Turing Machine, which we refer readers to

[GJ79]. But, remember the intuition it wants to capture is “NP-complete or harder”.

In practice, we often call an optimization problem NP -complete for convenience if its

decision version is NP -complete.

For NP -complete problems, automatic algorithm selection becomes significantly

valuable. For any NP -complete problem, there exists some tractable special cases

that are in P . We should find the dividing line and apply different algorithms for these

special cases. For the general cases, there are usually many alternative algorithms

available, be it approximation algorithms, randomized algorithms, or heuristic ones.

These algorithms often have different properties and perform best on different classes

of instances. Therefore, selecting the most appropriate algorithm for a given instance

becomes imperative. Also, it is not a secret that not all instances of a NP -complete

problem are equally hard. Researchers have discovered that by changing the values of

some parameters of an instance, it will go through an easy-hard-easy phase-transition

process [CKT91]. It is interesting and important to identify the turning points and to

treat the hard instances separately using specially-designed algorithms. In this thesis,

we will choose the MPE problem, whose decision version is NP -complete, as a case

study of building automatic algorithm selection system for NP -hard optimization

problems.
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Generally speaking, there are at least two approaches to solve the algorithm selec-

tion problem: analytically and experimentally. Furthermore, there are three analytical

methods of algorithm comparison and algorithm selection. The first one is to apply

worst-case analysis to the algorithms, compare their complexities, and select the best

one. Although this method is the most fundamental one, it does not always work

well. Some algorithms may have bad worst-case time complexities but they perform

very well on average in practice. Also, many complex, approximate, randomized,

and/or heuristic algorithms such as genetic algorithms [Hol75, Gol89] simply resist

formal analysis. The second way is to analyze the algorithms’ average-case complex-

ity. This method often requires a strong assumption on the distribution of input

instances, which is hard to make in most cases. The third method considers instance

classes instead of single instances [Man85]. It defines a subproblem of the original

problem by some intuitive criteria of instance easiness (or hardness) and then study

the worst-case complexity of the subproblem. Algorithms are designed and analyzed

on these subproblems, with resource requirements increasing smoothly when moving

to larger subproblems. The drawback of this method is that it is feasible only to

simple problems like sorting and is hard to be applied to NP-hard optimization prob-

lems which are the most important ones in practice. This method provides a way

to design adaptive algorithms that are optimal for some measures, but it is usually

impossible to design such an algorithm that is optimal for all measures. There is also

an algorithm selection problem for different adaptive algorithms. Furthermore, all

these analytical methods are generally not suitable for making predictions about the

empirical hardness of problem instances and the run time performance of the algo-

rithms. The ultimate goal of the analytical approach is to select the best algorithm

by just analyzing the description of the algorithms and the input instance (without

running them). Ideally, we would like to have a program that is able to take as input

both the descriptions of the instance to be solved and the candidate algorithms and

return the best algorithm. We will show in next chapter the inherent hopelessness of

this scheme.
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In this thesis, we propose an experimental machine learning-based methodology

of automatic algorithm selection in which the analytical results serve mainly as a

source of domain knowledge to guide the experimental design. This methodology is

more reasonable and more feasible because of the following reasons. First, even in

some cases where analytical algorithm selection is possible, the theoretical results still

need to be implemented and verified. Second, in practice, algorithm selection experts

seldom depend solely on theoretical analysis without observing the algorithms’ run

time behaviors. Third, the analytical method has its inherent limitations. We will

explore into this point more in chapter 3. Finally, the developments in the field of

experimental algorithmics, machine learning and AI have provided a set of powerful

techniques for implementing an experimental machine learning-based approach to

solve the algorithm selection problem.

2.1.2 Computability Theory

One goal of computational complexity theory is to identify intractable decision prob-

lems for which no efficient (polynomial time) algorithm exists to solve them. But

there even exists some problems for which no algorithm exists at all. Computability

theory is concerned with identifying such kind of unsolvable problems. The core of

automatic algorithm selection can be stated as the following decision problem: Given

an algorithm A, an input instance I, and an algorithm performance criteria measured

as a real number C, is A’s performance on I better than C? In order to study the

decidability of this problem, we briefly go over some basic concepts of computation

theory [HS01] in this section.

Recursive Languages and Decidability

In the previous section, we have considered decision problems as languages, and

algorithms as Turing machines that can recognize languages by methods such as

determining whether a given string is in the language or not. We have also talked

about recursive and recursively enumerable languages. Let us quickly recall that a
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language L is recursively enumerable (RE) if it is accepted by some Turing machine

M . M will halt on the input w if w ∈ L. If w /∈ L, however, M will halt or run

forever. In this case, we say M does not solve the decision problem for the language

L. A language is said to be recursive if there exits a Turing machine that accepts it,

and also halts on all inputs. A Turing machine that always halts solves the decision

problem for the language it accepts. The definition of decidability is given as follows:

Definition 10 (Decidable) A language is decidable if and only if it is recursive.

Intuitively, a problem is decidable if there exists an effective procedure; i.e., an

algorithm (or a computer program), that solves the problem. If no such procedure

exists, then the problem is undecidable. One may think that the existence of unde-

cidable problems poses limitations to the effectiveness of analytical problem solving

in mathematics.

The Existence of Undecidable Languages

The existence of undecidable languages is easy to see simply because there are more

languages than there are Turing machines [Pap94, HS01]. We just do not have enough

Turing machines for all languages. This can be shown by the difference between

countable and uncountable sets. Formally a set S is countable if it is either finite

or there exists some one-to-one correspondence between S and the set of natural

numbers. The set of real numbers is uncountable; i.e., there are more real numbers

than natural numbers. This has been shown by Cantor using the diagonalization

argument. Each Turing machine can be encoded as a binary string. It is easy to see

there is an one-to-one correspondence between the set of natural numbers and the

set of Turing machines. So we say the set of Turing machines is countable. On the

other hand, the set of languages (decision problems) is uncountable because we can

build an one-to-one correspondence between the set of languages and the set of real

numbers in [0, 1] which is uncountably infinite. A language is just a set of strings over

some alphabet
∑

. We can order the strings in
∑∗ by an ordering and give each string

an index number starting from 1. For example, {0, 1, 00, 01, 10, 11, . . .}. Any subset
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of it forms a language. So a language can be encoded like this: we use a 1 in the

ith decimal position to denote the inclusion of the string with index number i and 0

otherwise. The set of languages is precisely the set of such encodings (real numbers

in [0, 1]) and hence is uncountable.

Undecidability of the Halting Problem

Turing showed that the first well-defined decision problem, the HALTING PROB-

LEM, can not be settled by any effective computational procedures. The halting

problem is as follows.

HALTING PROBLEM (HALT)

INSTANCE: A Turing machine M and an input word w.

QUESTION: Does M eventually halt on input w?

Now we give the proof for the undecidability of HALT.

Theorem 2 HALT is undecidable.

Proof. Assume the HALTING PROBLEM is recursive and there is a program H

that takes as input a Turing machine M and an input I. If M halts, it returns “halt”,

otherwise it returns ‘’loop”. Now we construct another program K using H as follows:

function K() {
if(H() ==“loop”) return; //halt

else while(true); //loop forever

}

Since K is a program, let us use K as the input to K. If H says that K halts then K

itself would loop (that’s how we constructed it). If H says that K loops then K will

halt. In either case H gives the wrong answer for K. Thus the assumption about H

is wrong. 2

Once we have got one undecidable problem, we can prove the undecidability of

other problem by reducing it to the previously determined undecidable problem.
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Rice’s Theorem

Following the undecidability of HALT , we can show that a set of other problems are

also undecidable. This is the result of Rice’s theorem [Ric53, Hut01].

A property of recursively enumerable languages is a set of RE languages that

possesses that particular property. A property is trivial if it is either empty (satisfied

by no language at all), or all RE languages (satisfied by all RE language). Rice’s

theorem is stated as follows:

Theorem 3 Rice’s Theorem Any non-trivial property of recursively enumerable

languages is undecidable.

Proof. See [Ric53, Pap94, Hut01] 2

Rice’s theorem means that given an arbitrary algorithm A, there is no algorithm

that decides the non-trivial property of the language defined by A. The proof of

Rice’s theorem consists of a reduction from the Halting Problem. It shows how one

could use a property-checking algorithm to devise an algorithm for solving the Halting

algorithm. We refer interested readers to [Ric53, Pap94, Hut01] for details. In chapter

3 we will use this result to show the undecidability of the algorithm selection problem.

2.1.3 Kolmogorov Complexity and Algorithmic Information
Theory

In the practice of algorithm design, special-case algorithms are designed for some

special class of problem instances. They work best (sometimes only) on the target

class of instances because the algorithms compile some special information of the

input instances. One problem of theoretical interest is how to measure the mutual

information between input instances and the algorithms to solve them. Intuitively,

the more mutual information there is, the better the algorithm will perform on that

instance. The concept “information” here is different from the notion entropy as

developed by Shannon in classical communication and information theory [Sha48,

CT91]. There, entropy is defined on a random variable X with outcomes in a set
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S. It is a measure of the information produced from the set if a specific value is

assigned to X. It also measures the uncertainty change before and after we instantiate

X. It is a probabilistic notion that is natural for information transmission over

communication channels as it was developed. But in the context of instance hardness

and algorithm performance, we are interested in measuring the information conveyed

about an individual finite object (the problem instance), or a string, by another

finite object (the algorithm), or another string. In order to investigate this issue, we

need to look at results developed in Kolmogorov complexity [LV93] and algorithm

information theory [Kol65, Cha87]. Concepts reviewed in this section will be used

in chapter 3 to develop an abstract framework of problem instance hardness and

algorithm performance.

Universal Turing Machine

We use Universal Turing Machine (UTM) as our computational model. A UTM U is

a Turing machine that can simulate any other Turing machine T . We can encode the

action table of T in a string, construct a Turing machine that expects on its tape a

string describing the action table of T followed by a string describing the input tape

of T , and then compute the tape that the encoded Turing machine T would have

computed. A UTM can be thought of as a standard general-purpose computer that

runs programs on data in the usual way. It is a fundamental fact that such machine

exists and can be constructed effectively. It guarantees that some properly defined

concepts using UTM have some sort of invariant property [LV93].

Kolmogorov Complexity

Kolmogorov complexity, also called descriptive or algorithmic complexity [LV90], was

developed by Solomonof [Sol64], Kolmogorov [Kol65], and Chaitin [Cha66]. The basic

idea is to measure the complexity of a string by the size in bits of the smallest program

that can produce it. The idea comes from the observation that random strings are

more difficult to be compressed than strings that have internal regularities are. The

formal definition is given as follows:
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Definition 11 (Kolmogorov Complexity) Let U be the Universal Turing Ma-

chine. Let p be the shortest program that generates s on U . The Kolmogorov com-

plexity of a string s ∈ {0, 1}∗ is defined by

K(s) = min{|p| | U(p) = s}

Here, U(p) = s denotes that U , starting with p, terminates leaving s.

Definition 12 (Conditional Kolmogorov Complexity) Let x and y be strings ∈
{0, 1}∗. Let p be the shortest program that generates x on U given y. The conditional

Kolmogorov complexity of x given y is defined by

K(x|y) = min{|p| | U(p, y) = x}

By definition, it is easy to see that K(x| ∅) = K(x) and K(x|x) = 0. These defi-

nitions are machine-independent because they are defined on the UTM. Kolmogorov

complexity measures the randomness of string s by its incompressibility. The more

random string s has a larger value of K(s). K(s) will never be larger than ≈ |s|,
for we can always generate s by a program whose code is ‘print s’, and this pro-

gram is only marginally longer than s. For example, let s1 = ‘000000000000000′,

s2 = ‘479, 224, 570, 368, 102′. Intuitively s2 looks more random then s1 although by

Shannon’s measure they have the same probability ( 1
215 ) of being selected from an

ensemble of all possible strings of 15 bits. We can write a program of ‘print 15 0s’,

which is shorter than its length, to generate s1. But for s2, perhaps we can only write

a program of ‘print 479,224,570,368,102’ to generate it since it is so random that we

can not make use of any structural regularity to make the program shorter. So in

this example K(s2) > K(s1). The fact K(s1) < |s1| implies there is internal structure

and regularity in s1 so that it can be compressed, while K(s2) ≈ |s2| means that s2

is random and incompressible. For this reason, randomness means incompressibility.

Because of the invariance theorem of the UTM, the notion of Kolmogorov complexity

actually captures an intrinsic property of a string, or a finite object, independent of

the choice of the mode of description.

26



Algorithmic Information Theory

Kolmogorov complexity can be used to measure how much information is encoded in

a string x and how much information a string y contains about x [Kol65, LV90, LV93].

The Kolmogorov complexity of a string can be seen as the absolute information of

the string. One interpretation of K(x) is as the quantity of information needed

to generate x from scratch. Similarly, K(x|y) quantifies the information needed to

generate x given y. If K(x|y) is much less than K(x), then we may say that y

contains a lot of information about x. For applications, this definition of information

has the advantage that it refers to individual objects, not to objects that are treated

as elements of a set of objects with a probability distribution given on it [Sha48].

Definition 13 (Algorithmic Information in x about y) Let x and y be two strings.

The algorithmic information in y about x is defined by

I(y : x) = K(x)−K(x|y)

The value K(x) can be interpreted of as the amount of information needed to produce

x, and K(x|y) can be interpreted as the amount of information which must be added

to y to produce x. By definition, 0 ≤ I(y : x) ≤ K(x) and I(x : x) = K(x). When

string x contains no information about x, I(y : x) = 0.

In our study of problem instance hardness and algorithm performance, all in-

stances and all algorithms can be seen as strings. Hence we can use the concepts from

algorithmic information theory to measure the absolute information contained in an

instance and the relative information contained in an algorithm about an instance.

They serve naturally as measures of instance hardness and algorithm performance.

2.2 Experimental Aspects

In this section we review major issues that arise in the experimental aspects of au-

tomatic algorithm selection. The main purpose of algorithmic experiments in this

research is to generate a high quality, representative training data set that contains
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the knowledge we seek with regards to solving the algorithm selection problem; i.e.,

the dependency relationships between problem instance features and algorithm per-

formance measures.

2.2.1 Experimental Analysis of Algorithms

In the past thirty years, the dominant method of algorithm analysis has been the

asymptotic analysis of the algorithm’s worst-case or average-case behavior. Although

experimental analysis of algorithms has been intensively used in some other related

fields such as operations research and artificial intelligence, it is almost invisible in

the algorithm and data structure community. However, recently there has been

a growth in interests in experimental algorithmic works [Hoo94, GGM+97, Mor00,

Joh02, McG02, MSF+02]. This newly-developed field is called experimental algorith-

mics, which studies algorithms and data structures by joining experimental studies

with the traditional theoretical analysis.

This is because more and more researchers have realized that theoretical results

alone cannot tell the full story about algorithm’s performance. Moreover, many of the

recently invented algorithms, especially randomized and heuristic algorithms such as

Genetic Algorithm (GA) [Gol89], are too complex for a detailed mathematical analysis

to be reasonable. Usually for most such algorithms in practice, some facts are known

about their performance but they have really not been fully analyzed. One of the

main advantages of experimental algorithmic analysis is that it allows to investigate

how algorithmic performance statistically depends on problem characteristics. This is

the central problem of automatic algorithm selection.

Although in recent years a collection of rules-of-thumb to follow and a number

of pitfalls to avoid have been accumulating regarding to the experimental analysis

of algorithms [GGM+97], at present we do not have a solid science of experimental

algorithmics yet. There are no clear right answers for many questions on experimental

analysis of algorithms. In [Joh00], Johnson has listed this among one of the challenges

to theoretical computer science in the new century. In this research, we will discuss
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some basic issues of experimental algorithmics while centering around the algorithm

selection problem. These issues include: the selection of algorithms and features, the

random generation of problem instances, the measurements of algorithm performance,

how to assure the reproducibility and platform-independence of the results, how to

analysis the results, and so on.

2.2.2 Algorithmic Experiment Setup

Any algorithmic experiments involve running some algorithms on some problem in-

stances, collecting the data, and analyzing the result. Also, any experiments have in

advance some hypotheses or questions to test and ask. The central hypothesis of our

research is that there exists some dependency between problem instance characteris-

tics and algorithm performance, and this knowledge can be exploited to build algorithm

selection system to gain more efficient computation. In designing experiments to in-

vestigate this hypothesis, we must consider the following issues.

Which Algorithms and Which Features

Because instance features and algorithms are the most basic elements in our exper-

iments, the choice of the combination is all-important. Domain knowledge obtained

from analytical results plays an important role in making the choice. For any partic-

ular computational problem, there usually exists a list of algorithms that have been

defined and studied to a certain extent in the literature. In almost all cases, there

does not exist a single algorithm that outperforms all others on the entire problem

domain. Different algorithms have different properties and each algorithm typically

is most efficient for only a subset of all possible instances. The knowledge of which

algorithm works better on which class of instances is usually not explicitly available.

Sometime we may have some vague information like this: “if the permutation has

a high presortedness, then Insertion Sort should be used”, or “if the network is not

large and sparse, then the Clique-tree Propagation algorithm works very fast”. In

these cases, the cutting point or the working range of the algorithm still needs to be
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determined more precisely by experiments in order to facilitate automatic algorithm

selection.

Selecting the candidate algorithms is often straightforward. In theory, any algo-

rithm can be used as a candidate. But in practice, we can use domain knowledge

to filter out algorithms that are obviously inferior or too difficult to implement. A

good candidate algorithm should be easy to implement and by which a special class

of instances can be efficiently solved.

The selection of instance features relies heavily on domain knowledge as well. A

good feature should be easy to compute (usually negligible compared to the problem-

solving time) and most relevant to the performance of a particular algorithm or a

particular class of algorithms.

Generation of Training and Test Instances

One of the biggest practical challenges in any algorithmic experiments is assembling

the required test instances. The best test instances are probably those real world

instances that are taken from real world applications. They represent the most im-

portant set of instances. Unfortunately, it is rarely possible to collect more than a

few real world problems instances for most computational problems. In this research,

it has taken us nearly 3 years to accumulate only around 20 real world Bayesian

networks. In some applications, real world instances can also have limitations since

some potential real world instance may not have been implemented yet. Also, real

world instances may not cover all problem characteristics of interest.

An alternative is to use randomly generated instances. This requires us to develop

a random generator that can generate instances with specified parametric character-

istics uniformly at random. This problem by itself is quite a challenge. It is still an

open question whether there exists polynomial random generation algorithms for all

NP languages [San00]. The naive approach is to exhaustively enumerate all possible

instances and pick one uniformly at random. But this does not apply to many ran-

dom generation problems simply because there are far too many possible instances
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in general. The method we use in this research is a polynomial time, almost uniform

random generation algorithm based on Markov chain approach [Sin93, MM00, IC02].

The basic idea is to construct a dynamic stochastic process, or a finite Markov chain,

whose states correspond to the set S of structures of interest. The process is able to

move around the state space by means of random local perturbations of the struc-

tures. Moreover, the process is designed to be ergodic. If it is allowed to evolve in

time, the distribution of the final state tends asymptotically to a unique stationary

distribution π, which is independent of the initial state. The stationary distribution

π can be designed to be uniform. By simulating the process for a sufficiently many

steps and outputting the final state, we are able to generate elements of S uniformly

at random if π is set to a uniform distribution.

Yet another choice is combining real world instances and random generation to-

gether. We can first analyze the real world instances and get a characteristic vector

statistically representing the distribution of real world instances, then input the char-

acteristic vector to the random generator to produce random synthetic real world

instances. In our experiments, all three kinds of instances will be used.

Algorithm Performance Measurements

Measuring and collecting algorithm performance data is another practical challenge.

The related issues include what to measure, how to ensure reproducibility of the results,

and how to reduce variances.

Running time and solution quality are two most common measures of algorithm

performance, although sometimes other measures like space can be important. For

tractable problems like sorting, measuring actual running time (CPU time or wall

clock) is important. But it may become hard to interpret because it is influenced

by many uncertain factors of the environments. The granularity of the time unit

may cause problems as well. In our experiments on sorting we had to find a High

Resolution Time Stamp Facility [IBM02] to measure run time in microsecond because

JDK only provides millisecond resolution. For algorithms solving NP -hard problems,
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other measures like number of calls to a crucial subroutine is usually a better choice.

Heuristic search algorithms often need to evaluate many search points (calling the

solution evaluation subroutine) during the problem solving process. Measuring the

number of calls to the evaluation subroutine ensures the results independent of plat-

forms and thus improves the reproducibility of the results. Another issue is the balance

between time and solution quality. So far, the most effective way to fairly compare

different heuristic algorithms is to allow all algorithms to consume the same amount

of computation resources, with distinctions being based on the quality of solutions

obtained [RU01].

Variance reduction techniques [McG92] are also necessary when dealing with ran-

domized algorithms. If not carefully handled, the variability between runs of algo-

rithms and between instances may obscure the results and make it hard to interpret.

Instance variance can be reduced by using the same set of randomly generated in-

stances for all runs so that all algorithms see the same instances. Algorithm variance

can be reduced by performing the same algorithm on the same instances for many

runs and recording the average performance.

2.3 Bayesian Networks

Reasoning under uncertainty is a common issue in our daily life and a central one in

AI. Bayesian networks (BNs) [Pea88, Nea90, RN95], also known as Bayesian belief

networks, belief networks, causal networks, and probabilistic networks, are currently

the dominant technique in AI for uncertain knowledge representing and reasoning.

The underlying principle is to apply probability theory to building intelligent systems

for reasoning with incomplete information and uncertain knowledge. However, until

twenty years ago it was still considered impractical to do so by mainstream AI com-

munity due to the difficulty of manipulating the exponentially-sized joint probability

distributions. The breakthrough was made in early 80s’ when Pearl introduced a

probabilistic graphic model, namely the Bayesian networks, and published his effi-

cient and elegant message propagation inference algorithms for particular classes of
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BNs [KP83, Pea86, Pea88]. BNs combine the representational and algorithmic power

of graphic theory with probability theory. They provide a compact and natural tool

for representing uncertain knowledge and facilitate efficient inference and learning

algorithms. BNs have proven useful in a wide range of applications including medical

diagnosis, decision support systems, real-time monitoring, intelligent user interface,

image analysis and so on.

Bayesian networks play an important role in this research because they serve for

two purposes at two different levels. In one hand from the point of view of learning,

it is a meta-level knowledge representation model (or a classifier) just like a decision

tree or a Naive classifier. In the other hand, one of its inference problems, the MPE

problem, is chosen as test case of our machine learning-based algorithm selection

methodology. In this section, we introduce basic concepts about representation and

inferences in Bayesian networks. We will introduce Bayesian networks learning in

chapter 5 together with some other learning algorithms.

2.3.1 Representation

In BNs, the domain of interest is viewed as a probabilistic model that consists of

a set of random variables. Each random variable can take particular values with

certain probabilities 1. In theory the JPD of the probabilistic model contains complete

information of the random variables and their dependencies. But in practice it is

obviously infeasible to deal with the JPD directly. BNs sidestep the JPD and work

directly with conditional probabilities in order to reduce the representational and

computational complexity.

The Syntax of Bayesian Networks

A Bayesian network [RN95] is a graph in which the following holds:

1. A set of random variables corresponds to the nodes of the network.

1For simplicity and without losing generality, we only consider discrete variables.
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2. A set of directed links connects pairs of nodes. The intuitive meaning of an

arrow from node X to node Y is that X has a direct influence on Y .

3. Each node has a Conditional Probability Table (CPT) that quantifies the effects

that the parents have on the node. The parents of a node X are all those nodes

that have arrows pointing to X.

4. The graph is a Directed Acyclic Graph (DAG).

The topology of the network can be thought of as an abstract knowledge base

of the domain. It represents the general structure of the dependencies among these

variables.

The Semantics of Bayesian Networks

The semantics of Bayesian networks can be understood in two ways. The first is to see

the network as a representation of the JPDs. The second is to see it as an encoding of

a collection of conditional independence statements. These two views are equivalent

but they emphasize two different aspects. The former is helpful in understanding how

to construct BNs. The latter is helpful in designing efficient inference algorithms.

From the first viewpoint, a Bayesian network provides a complete description of

the domain. It encodes JPD in a compact manner. Every entry in the JPD can be

calculated from the information in the network using the following formula, i.e., the

chain rule:

P (x1, . . . , xn) =
n∏

i=1

P (xi|π(xi)) (2.1)

The numbers in the network − these probabilities − are interpreted as beliefs; i.e.,

probability is a measure of belief in a proposition given particular evidence [Che85].

That is why they are also called belief networks. This interpreting avoids the diffi-

culties associated with the classical frequency definition of probabilities.

From the second viewpoint, topologically, the BNs use three types of local connec-

tions to decompose a JPD to a series of conditional independence statements: linear,
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diverging, and converging.

The concept of d-separation [RN95] is fundamental in BNs. It states that “If

every path from node X to node Y is d-separated by a set of nodes E, then X and

Y are conditionally independent given E”. This is very helpful in designing efficient

inference algorithms.

A set of nodes E d-separates two nodes X and Y if and only if there is a node Z

on the path from X to Y for which one of the following condition holds:

1. The path is linear and Z is in E.

2. The path is converging and Z is in E.

3. The path is diverging, and neither Z or any descendant of Z is in E.

2.3.2 Inferences

One main purpose of building Bayesian networks is to use it to perform inference; i.e.,

to compute answers to users’ queries for prediction, diagnosis or explanation about the

domain, given exact values of some observed evidence variables. There are basically

two types of BN inference tasks: belief updating and belief revision. Many belief

updating algorithms can be used for belief revision with just minor modifications,

and vice versa.

Belief Updating

Belief updating is also called probabilistic inference, denoted Pr. Its objective is to

calculate P (X|E), the posterior probabilities of query nodes X, given some observed

values of evidence nodes E.

P (X|E) =
P (X)

P (X, E)
(2.2)

A simple form of it results when X is a single node; i.e., we are interested in computing

the posterior marginal probabilities of a single query node. Pr mainly involves a

marginalization operation over query nodes. As what the name tells, these posterior

probabilities change smoothly and incrementally with each new item of evidence.
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Belief Revision

The task of belief revision amounts to finding the most probable configuration of

some hypothesis variables X, given the observed evidence. The resulting output is

an optimal list of instantiations of the hypothesis variables, a list that may change

abruptly as more evidence is obtained. Belief revision for the case when X contains

all non-evidence nodes is also known as computing the Most Probable Explanation,

or MPE. An explanation w for the observed evidence E is a complete assignment

{X1 = x1, . . . , Xn = xn} that is consistent with E. Computing the MPE w∗ is

finding an explanation such that no other explanation has higher probability.

P (w∗|E) = max
w

P (w|E) (2.3)

MPE is a typical optimization (maximization) problem. Computing kMPE means

finding the top k highest explanations.

In the cases when X only contains a partial subset of all non-evidence nodes, the

task is called finding the Maximum a Posteriori Hypothesis, or MAP . MAP involves

both marginalization and maximization.

Complexity of Inferences in Bayesian Networks

Computing Pr, MPE and MAP are all NP -hard. However, they still belong to

different complexity classes. MPE is essentially a combinatorial optimization problem.

MPE is NP -complete (more precisely, its decision version is NP -complete) [Shi94,

Par02b]. Pr is harder. It is a counting problem and its complexity is #P -complete

(the functional version) [Coo90, Nea90]. Its decision version is PP -complete, which

contains the languages for which there exists a nondeterministic Turing machine that

the majority of the nondeterministic computations accepts a string if and only if the

string is in the language [Pap94]. MAP is the hardest one. MAP combines both

counting and optimization and it is NP PP -complete [Par02a]. NP PP -complete is the

class of languages that can be recognized by a non-deterministic Turing machine in

polynomial time given a PP oracle; i.e., if any PP query could be answered for free.
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For a special class of BN topology such as polytrees, Pr and MPE are both poly-

nomial [Pea88]. However, MAP remains NP -complete even on polytrees [Par02a].

Furthermore, the approximations of MPE, Pr, and MAP are NP -hard as well

[DL93, AH98, Par02a]. Particular, MPE is MAXSNP -hard, which means means

there is no approximation scheme for MPE until P = NP [Pap94]. MAP on polytrees

is also MAXSNP -hard [Par02a].

2.4 Related Works

In this section we review works that are directly related to our research of applying

machine learning-based approach to solving the algorithm selection problem.

2.4.1 The Algorithm Selection Problem

The algorithm selection problem is originally formulated in [Ric76]. Later it has been

mainly applied to the selection of problem-solving method in scientific computing

[HCR+00], specifically to the performance evaluation of numerical softwares. An ab-

stract model of algorithm selection is also given in [Ric76] as reproduced in Figure 2.2,

where x is the input instance in the problem space and w is the performance criteria.

The input problem instance is represented as the feature(s) f in the feature space

by a feature extraction procedure. The task is to build a selection mapping S that

provides a good (measured by w ) algorithm A to solve x subject to the constrains

that the performance of A is optimized.

Algorithm selection can be either static or dynamic. Static algorithm selection

system makes the selection and then commits to the selected algorithm, while dynamic

algorithm selection system may change its selection dynamically by monitoring the

running of the algorithm. One special kind of dynamic algorithm selection is recursive

algorithm selection [LL00, LL01] in which a decision of algorithm selection needs to

be made every time a recursive call is made. For example, a sorting algorithm often

needs to recursively sort smaller instances. At each recursive call, you need to make

the decision about which sorting algorithm to choose. The goal becomes to optimize a
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Figure 2.2: The Abstract Model of Algorithm Selection Problem

sequence of algorithm selection decisions dynamically. In this research we study static

algorithm selection. The methodology developed in this research can be extended in

the future to solve the dynamic algorithm selection as well.

2.4.2 Algorithm Selection in Various Applications

Algorithm or problem-solving technique selection has been studied in various fields.

In data compression, Hsu and Zwarico [HZ95] studied the automatic synthesis of com-

pression techniques for heterogenous files based on some qualitative and quantitative

properties of each segment of the file. In machine learning, Brodley [Bro93, Bro94]

investigated the selection of inductive learning algorithms for different learning tasks

based on the learning algorithm’s inductive bias or selective superiority. In planning,

Fink [Fin98] described a selection technique based on statistical method to select a

planning algorithm and the time bound of the problem solving. In Constraint Satis-

faction Problem (CSP), Minton [Min96] developed an inductive learning system that

configures constraints Satisfaction programs. In these works the knowledge repre-
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sentation of the meta-reasoner is often a set of “if-then” rules derived from simple

statistical models. As machine learning becomes more mature, it is natural to apply

more advanced models to build better algorithm selection systems.

2.4.3 Meta-reasoning Techniques

Researchers in AI have long realized that great efficient gains can be achieved by al-

locating a portion of costly computational resources to meta-level deliberation about

the best way to solve a problem. In particular, Breese and Horvitz [BH90] studied

the intelligent reformulation or restructuring of a belief network before solving the

inference problem. They also described the metareasoning-partition problem; i.e.,

the problem of ideally apportioning resources between a meta-analysis and the ac-

tual problem solving. They presented principles for computing the ideal partition

of resources under uncertainty for several types of user requirements. In the field of

real-time AI, flexible computation [Hor90] and anytime algorithms [Zil93] offer an effi-

cient mechanism to trade off computation time for quality of result. In these models

computations can be interrupted at “any time” and they can still produce results of

a guaranteed quality. Gomes and Selman [GS97] studied the problem of algorithm

portfolio design to combine several different algorithms into a portfolio in order to

gain improvement in terms of overall performance. Crawford et al. [CFGS02] pro-

posed a framework for on-line adaptive control of problem solving, which combines

ideas from control systems with adaptive solving techniques.

In the particular field of Bayesian network inference, some researchers have stud-

ied inference algorithm selection and integration. Santos [SSW95] developed a dis-

tributed architecture, OVERMIND, for unifying various probabilistic reasoning algo-

rithms that have both anytime and anywhere properties. Anywhere algorithms can

exploit intermediate results produced by other algorithms. When different algorithms

have both anytime and anywhere properties, they can be harnessed together into a

cooperative system that exploits the best characteristics of each algorithm. Within

the same framework, Borghetti [Bor96] and Williams [Wil97] studied the algorithm
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selection problem for BN inference algorithms as well. Borghetti used performance

profiles and Williams developed a selection process based on simple analytical prin-

ciples. Jitnah and Nicholson [JN96] investigated various network characteristics and

empirically studied the relationship between instance features and inference algorithm

performance.

2.4.4 The Bayesian Approach

In the related field of NP -hard problem solving, researchers have applied various

machine learning techniques to learn the empirical hardness of optimization problems

and to tackle hard computational problems. In particular, the Bayesian learning

approach was used in [HRG+01] for characterizing the run time of problem instances

for randomized backtrack-style search algorithms that have been developed to solve

a hard class of structured constraint-satisfaction problems. The same approach was

also used in [KHR+02] to learn the dynamic restart policies for randomized search

procedures that take real-time observations about attributes of instances and about

solver behavior into consideration. In some earlier work, Horvitz and Klein [HK95]

constructed Bayesian models considering the time expended so far in theorem proving.

2.5 Summary

In this chapter we have reviewed concepts from various related fields. Fields of the-

oretical aspects consists of computational complexity theory, computability theory,

and algorithmic information theory. Fields related to experimental aspects emphasize

the role of algorithmic experiments in our approach. Major experimental issues have

been discussed. We have also introduced basics concepts about Bayesian networks.

Finally, we have reviewed researches in various areas that are closely related to our

work.

Our research aims at unifying ideas from these different areas and building al-

gorithm selection systems using experimental, machine learning-based methods. As

far as we are aware, this is the first attempt to systematically combine algorithmic
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methods and machine learning techniques for solving the algorithm selection problem.

Most researches in algorithm selection use simple knowledge representation such as

statistic models and simple “if-then” rules. Some of them rely on analytical princi-

ples that are hard to be automated and generalized. Our approach relies more on

experimental methods to make the automation easier. Machine learning and data

mining techniques can help us gain more insights and knowledge on algorithm’s run-

time behavior which analytical methods can not provide. We believe the proposed

methodology can be extended to dynamic algorithm selection as well. From the

perspective of solving hard problems, it also provides an effective way of integrating

different algorithms together to build more powerful solvers for NP -hard optimization

problems.
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Chapter 3

Some Theoretical Results on
Analytical Algorithm Selection

In this chapter, we present some theoretical results with the algorithm selection prob-

lem. We first show, by Rice’s theorem, that the general algorithm selection problem is

undecidable. We then propose a general, abstract theoretical framework of instance

hardness and algorithm performance for search based on algorithmic information the-

ory and Kolmogorov complexity. We claim that algorithm selection for search is also

undecidable because of the incomputability of Kolmogorov complexity. We then apply

the theoretical framework to GA-hardness to show the nonexistence of a predictive

GA-hardness measure if based only on the description of the input instance and con-

figurations of the GA. Driven by these theoretical results, we turn to a more feasible

direction, applying inductive approach, rather than analytical approach. The pro-

posed inductive approach relies significantly on experimental methods and machine

learning techniques to build algorithm selection systems.

3.1 Undecidability of the General Automatic Al-

gorithm Selection Problem

We have introduced in chapter 2 that any algorithm can be rendered as a Turing ma-

chine and that any problem can be rendered as a language. The automatic algorithm

selection problem asks to design an algorithm, or a Turing machine, that takes as
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inputs both the descriptions of two candidate algorithms and a problem instance and

outputs evaluations of these two algorithms’ performance according to some criteria.

The most common criteria includes problem-solving time and quality of the solution

returned. Assuming both algorithms return the correct solution for that instance, we

consider that the one taking less time performs better and thus should be selected.

Hence the language (decision problem) of the algorithm selection problem can be

formulated as follows:

Definition 14 (Language of the Algorithm Selection Problem)

ATM = {< M, I, S, T > |M is a TM and M accepts I in T steps and the returned

solution is S }
Here, M corresponds to the algorithm. I is the input instance to be solved by

the algorithm. S is the solution or answer for the instance and T represents a given

number of steps that M operates.

Recall that Rice’s theorem states that any non-trivial property of a Turing machine

is undecidable. A property corresponds to a set of recursively enumerable (r.e.)

languages possessing the particular property. A property is trivial is it is either

empty (not satisfied by any r.e. languages) or it is satisfied by all r.e. languages.

The property is non-trivial if there is both at least one Turing machine that has the

property and at least one that does not have the property.

One consequence of Rice’s theorem to pragmatic computer science is shown in the

following grading program example [Tay98]. “Suppose that the instructor in an intro-

ductory programming language class has asked students to write a C++ program that

computes a given partial recursive function F . (We might even suppose the function

is defined by only dozens of cases.) Usually, the instructor needs to review the code

as well as examine a listing of output for a number of inputs. Since implementations

vary tremendously from student to student, the instructor might hope for some grading

program that could be run on a given student’s source code so as to determine whether

it in fact computes F correctly. ” Unfortunately, Rice’s theorem asserts that there

can be no such grading program. This is because that first {F} is a nontrivial set
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of partial recursive functions, i.e., a nontrivial set of recursive enumerable languages.

By Rice’s theorem, the membership of the following set

{ M | M is a Turing machine that computes F }

is undecidable. Furthermore, by Church-Turing’s thesis, a C++ program is equivalent

to a Turing machine. So the membership of the following set:

{ P | P is a C++ program that computes F }

is also undecidable. We must conclude that the envisioned grading program can not

exist after all (at least if Church-Turing’s thesis is true). Therefore, Rice’s theorem

eliminates the hope of algorithmically testing the input-output behavior of arbitrary

programs. This implies that program verification techniques are in general noneffec-

tive. In general, in order to establish program correctness, we must resign ourself to

working with nonmechanistic techniques.

Going back to our algorithm selection problem, it is easy to see that the ATM is a

non-trivial language. Hence by applying Rice’s theorem we have the following result:

Theorem 4 ATM is undecidable.

Proof. First, ATM is recursively enumerable. We can simply build a TM to simulate

M on input I to see whether M halts in time T and returns solution S. Second, ATM

specifies a property that is non-trivial, i.e., not all recursively enumerable languages

can represent a TM that accepts I in time T and returns a solution S, and there

at least exists one language that satisfies this. According to Rice’s theorem, any

non-trivial property of recursively enumerable languages is undecidable, so ATM is

undecidable. 2

It implies that in general, there can be no hope of finding a means of automatic

algorithm selection only from the descriptions of these algorithms. This general result

should not be surprising because the HALTING PROBLEM basically says that you

can not even tell whether a Turing machine (algorithm) can halt or not. A related

result is the undecidability of the equivalence of two Turing machines, which says that
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given two Turing machines M1 and M2 the language EQ = {e(M1)e(M2)|L(M1) =

L(M2)} is undecidable.

3.2 An Abstract Framework of Instance Hardness

and Algorithm Performance for Search

We have demonstrated the undecidability of automatic algorithm selection using Tur-

ing machine as the computational model. In this section, we look at a more restricted

and practical case: automatic algorithm selection for search.

Intuitively, a search algorithm can perform better if it compiles more informa-

tion about the input instance, or the search space. Hence we need to investigate the

information contained in one string (the algorithm) about the other string (the prob-

lem instance). Kolmogorov complexity [LV93] is a measure of absolute information

content of individual objects. The algorithmic information defined on Kolmogorov

complexity measures the mutual information of two individual objects. Therefore,

it is natural to use these concepts to study instance hardness and algorithm per-

formance in search. In the following, we present a general, abstract framework of

instance hardness and algorithm performance for search based on Kolmogorov com-

plexity. The framework is still in its crude form and needs to be further refined. It

is not to be used as a predictive model. Instead, we apply it to show that the gen-

eral problem of automatic algorithm selection for search is impossible because of the

incomputability of the mutual information between a search algorithm and an input

instance. We first set the stage by introducing the Black Box Optimization (BBO)

model [WM95, WM97, Cul98].

3.2.1 Black Box Optimization (BBO)

In the BBO model, we are given a function, f : X → Y , for which we seek the set

of optimal solutions, x∗, that maximizes or minimizes f . X is a finite set of strings

of both 0s and 1s and Y is a finite set of real numbers. People have interchangeably

called f the fitness function, objective function, cost function, search space, or simply
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the problem instance. A heuristic search algorithm for BBO usually starts from an

initial point of the search space or a population of initial points, explores the search

space while keeping a population of one or more solutions x ∈ X and the associated y

values, and tries to improve upon these solutions. The search algorithm can be seen

as a function mapping from its search history to a new point or a set of new points

in the search space according to some heuristic. For simplicity, we assume it never

revisits points in its searching history. Algorithms such as hill-climbing, simulated

annealing, tabu search, and GAs are all working in this manner.

Time and solution quality are two of the most common measures in evaluating and

comparing search algorithm performance. In heuristic search, time can be measured

by the number of search steps (the number of times the search space has been visited),

and solution quality can be measured by the error between the global optimal and the

best solution so far. In the most general case, the algorithm performance measure is

defined as a function of these two factors according to users’ requirements. Sometimes

efficiency is more crucial whereas sometimes precision is more important. In either

situation, this information can be extracted from the search histogram.

3.2.2 Random Instance and Random Algorithm

Both search problem f and search algorithm a in the BBO model can be represented

as strings ∈ {0, 1}∗. Let t(f) be the string representation of the mapping table of

f . It has N entries listing all pairs of (x, y) in the forms of strings of 1s and 0s.

Defining f amounts to specifying t(f). We can observe in practice that some problem

instances, or search spaces, are more regular than others. The regularity of an instance

can be exploited to design efficient algorithms for them. However, algorithms that

compile some useful problem domain information have more structures than blindly

random search, thus they solve problems more efficient. We define the randomness of

a problem as follows [AM88]:

Definition 15 (Randomness) The randomness of a problem instance f : {0, 1}N →
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R is defined in bits by

R(f) = log2K(t(f)). (3.1)

where K(t(f) is the Kolmogorov complexity of t(f).

R(f) ranges from ≈ 0 to ≈ N because of the logarithm. Using R(f), we define a

random problem versus a structured problem. We will fix a threshold R0 (the particular

choice of which is not crucial to most of the theory) and introduce the following

definition [AM88]:

Definition 16 (Random & Structured Problem) A problem f : {0, 1}N → R

is random if R(f) ≥ R0. A problem is structured if it is not random.

Since a search algorithm can also be seen as a function and coded into a string, we can

define the concept of random algorithm and structured algorithm in the same manner.

Please note that the words “random” and “structured” have precise meaning here

regarding to the length of the shortest programs to generate them. By this definition,

both random (probabilistic) search and general brute force enumeration search are

random algorithms in terms of their Kolmogorov complexity. It is straightforward to

understand that random (probabilistic) search is random (Kolmogorov). The general

brute force enumeration algorithm is random because it just enumerates all points in

the search space and treats all points equally. It has no bias over any search points.

Thus the shortest program to generate it has to list all of its mapping pairs.

One fundamental result of Kolmogorov complexity is that nearly every string is

random. Correspondingly, we can say that in the BBO model almost all problems are

random problems and almost all algorithms are random algorithms. This fact suggests

a method to generate a random problem (or a random algorithm) in a probabilistic

manner. Suppose we have a fair coin as the ideal random (probability) source. For

each entry in the truth value table t(f) of a problem f , we flip a coin to set the value.

This will generate a random problem with very high probability.

Random problem (instances) and random algorithm are two fundamental concepts

on our subject. Random problems are the “hardest” problems because they contain
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no internal structures for any algorithm to exploit. An example is the needle-in-a-

haystack problem [Gre93]. No algorithm can solve such a problem more efficiently

than random search [WM95, WM97]. Random (Kolmogorov) search algorithms are

the least efficient algorithms because they comply no information about the problem

and just visit the search space randomly.

3.2.3 Instance Hardness and Algorithm Performance

The randomness of an instance indicates its hardness. If an instance is highly random,

then it contains almost no internal structures for any algorithm to exploit. Thus it is

hard to solve. To capture this intuition, we define instance hardness as follows:

Definition 17 (Instance Hardness) The hardness of an problem instance f : {0, 1}N

→ R is defined as

H(f) = R(f) (3.2)

where R(f) is the randomness of f .

However, the information about an instance in an algorithm indicates the algo-

rithm’s performance on solving the instance. If an algorithm contains a lot of infor-

mation about the instance, it can solve the instance more efficiently. For example, the

hill-climbing algorithm assumes that the search space contains a single peak, so the

algorithm can solve the instance easily. We define algorithm performance as follows:

Definition 18 (Algorithm Performance) The performance of algorithm a on in-

stance f is defined as

P (a, f) = I(a : f) (3.3)

where I(a : f) = K(f)−K(f |a) is the algorithmic information contained in a about

f .

3.2.4 The Incomputability of Kolmogorov Complexity

We have provide natural definitions of instance hardness and algorithm performance

using Kolmogorov complexity. The unfortunate fact about Kolmogorov Complexity
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is that it can not be explicitly computed. Given an individual object, there is no way

to tell if it is incompressible as shown in the following proof [LV93].

Theorem 5 The Kolmogorov Complexity K(x) of a finite string x is not computable.

Proof. a) There are 2n binary strings of length n and only
∑n−1

i=0 2i = 2n − 1 binary

programs of length < n. Hence there is one x (at least) that is not computed by a

program of length < n. This x has complexity K(x) >= n.

b) Suppose K(.) were computable. Now, for every n there is a lexicographical

first x, say xn, of complexity K(xn) >= n (by a)). But by the computability of

K(.) we can compute the complexities of all binary strings of length n, and hence

find the lexicographical first x among them that has complexity K(x) >= n. By

definition, this is xn. Since the only information we required to compute xn was

the number n (can be given in log n bits) plus a fixed standard program, we obtain

K(xn) <= logn + O(1). This contradicts K(xn) >= n for all n apart from a finite

initial set of values of n. Hence K(x) is not computable. 2

This limits the practical applications of Kolmogorov Complexity. As a result in our

context, it means that automatic algorithm selection for search is also not decidable.

3.2.5 Deceptive Problems and Deceptively-solving Algorithms

Now let us consider the following question: given a problem instance, can we deliber-

ately design an algorithm that performs worse than random search? If the problem

happens to be a random one, it contains no internal structured information so we

cannot design an algorithm to perform either better or worse than a random search.

If it is a structured problem but we do not have any information about its structure,

it is still hard for us to design an algorithm worse than random search because we

do not know what we should deceive. The only case we can do that is when the

problem is a structured one and we know the information about the problem. The

resulting algorithm can be called a deceptively-solving algorithm for its “purpose” is

seek deceptiveness and to perform worse than random search. It is a structured algo-

rithm since it contains structural information about the problem. But the algorithm
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uses the structural information in a “pathological” way. On the other hand, there

are algorithms that are structured and perform better than random search. These

algorithms can be called straightforwardly-solving algorithms.

Similarly, for a given nonrandom algorithm, if we do not have information about

its search strategy and dynamics, it is impossible (with probability approaching zero)

to come up with a structured problem that is deceptive, i.e., worse than a random

problem. But, knowing the search strategy of an algorithm, we can design a problem

to fail it. We call such a problem deceptive. Non-deceptive problems are called

straightforward problems.

From this analysis, we can see that for a given structured instance, structured

algorithms can be divided into straightforwardly-solving and deceptively-solving al-

gorithms. Similarly for a given structured algorithm, the space of structured problem

instances can be divided into straightforward problems and deceptive problems. From

the viewpoint of information, we can interpret it as this: for a given structured prob-

lem, a straightforwardly-solving algorithm contains positive information about its

straightforward problem; a random algorithm contains zero information about it; a

deceptively-solving algorithm contains “negative” information. Similarly for a given

structured algorithm, it contains positive information about the straightforwardly-

solving problems of it; it contains zero information about the random problems; it

contains “negative” information about its deceptive problems.

The concept of an algorithm containing “negative information” about a problem

instance is not captured by Kolmogorov complexity because K(x|y) ≥ 0. However,

it is a reasonable concept in the context of instance hardness and algorithm perfor-

mance. The Turing machine was invented by Turing in order to formalize the notion

of “algorithm” and “effective calculability”. In [Tur36], Turing sees the operation of

a Turing machine no different from the process of human’s computing following some

mechanic procedure. Actually, before implementation, any algorithm is only an idea

about the problem solving procedure existing in the algorithm designer’s brain. The

designer comes up with the idea based on his information and understanding to the
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input instance. Since it is just an idea in the designer’s brain, it can be either right

or wrong, i.e., it might not agree with the true information of the input instance. In

search, the searcher’s information about the search space is important to his perfor-

mance. An accurate map of the search space can be of great to the searcher, but

a wrong one can lead to nowhere. In this case, we can say the wrong map (a poor

algorithm or a wrong heuristic) contains “negative information” about the search

space.

Therefore, there are three factors that cause a problem instance to be hard for a

particular structured algorithm:

1. It is a random problem, so it has no structural information for the algorithm to

use. An example is the needle-in-the-haystack problem.

2. It is a structured problem, but the algorithm contains zero information about it.

In this case, they are mismatched.

3. It is structured, but deceptive. In this case we say the algorithm contains negative

information about the problem and performs worse than a random search.

In turn we call these three factors randomness, mismatch and deception.

3.3 GA-Hardness Revisited

In this section, we apply the abstract theoretical framework of instance hardness and

algorithm performance to study GA-hardness. We discuss several major misconcep-

tions in previous GA-hardness research and propose some promising directions for

future research.

3.3.1 Genetic Algorithms (GAs)

GAs have been defined as generic search procedures based on the mechanics of the

natural selection and genetics [Hol75, Gol89]. In order to apply a GA to a search or

optimization problem, we must first encode it as artificial chromosomes, which can
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be strings, parameter lists, permutations codes, or any meaningful computer codes.

Second, we must have a fitness function that helps evaluate the value of a chromo-

some, or a search point. Having encoded the problem into chromosomes and fixed

a fitness function to discriminating a good chromosome from a bad one, we start

the evolution process by creating an initial population of the encoded chromosomes.

GAs then use some genetic operators to process the population generation by gener-

ation. This creates a sequence of populations and, hopefully, they will contain better

solutions as the evolution goes on. The most often used genetic operators include

selection, crossover (recombination) and mutation. These operators all have some

genetic meaning. Selection allows better individuals to have more offspring. This is

the principle of natural selection: survival-of-the-fittest. It prefers better solutions

to worse ones. Crossover or recombination combines pieces of parental chromosomes

to form new, hopefully better offspring. This is the principle of sexual reproduction,

a reproduction strategy used by most advanced species. It ensures mixing and re-

combination among the genes of the offspring. Mutation simply modifies one piece

of a single parental chromosome to create new individuals. This corresponds to gene

mutation in genetics. It represents a random walk in the neighborhood of a single

individual. In the process of natural selection, good results of mutation will be kept

and bad ones abandoned.

GAs can solve some hard problems quickly and reliably. They use little problem-

specific information and have a clear interface. They are also noise tolerant and easily

extensible. GAs have been successfully applied into a broad range of applications in

search, optimization, and machine learning. However, GAs do fail at times. GAs

are complex systems and are hard to design and analyze. Ever since its invention

[Hol75], researchers have put a lot of effort into understanding how GAs work and

what makes a function or problem hard for GAs to optimize. There are still quite a

few open problems despite more than 30 years of research and application. In research

into the dynamics of GAs, various models have been developed to explain how GAs

works, but none of them have given a definitive answer. Most models have aimed at
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building a GA theory with mathematical rigor and a reliable predictive ability, but

they all have only gained limited success in the simplest, idealized settings. These

include schema analysis [Hol75, Gol89, Whi93], difference equations [Gol87, Gol89],

Markov chains [GS87, Dav91b, NV92, Vos93], epistasis analysis [Dav91a], landscape

analysis [FM93a, CL96], transform models [BG91], etc.

Another line of research interwoven with GA dynamics is GA hardness. The

goal is to identify which characteristics of problem instances are hard for GAs to

optimize. Many characteristics and measures have been proposed to distinguish so-

called GA-hard from GA-easy problems. But, again, none of the characteristics have

achieved the goal of being a reliable predictive GA-hardness measure. These in-

clude deception [Gol87, Gol89, Whi90], isolation, noise [Gol93, Gol02], multimodality

[GDH92, HG95, RW99a], landscape ruggedness, fitness distance correlation [JF95],

epistasis variance [Dav91a, Nau98], epistasis correlation [Nau98, KNR01], site-wise

optimization measure [Nau98], etc.

3.3.2 No Free Lunch Theorems

Wolpert and Macready’s No Free Lunch (NFL) [WM95, WM97] Theorems are impos-

sibility theorems for the BBO model. There are two NFL results respectively relating

to the space of all possible problems and the space of all possible algorithms.

No Free Lunch Theorem 1 Averaging over all possible problems, no search algo-

rithm is better than any other algorithm.

No Free Lunch Theorem 2 Averaging over all possible search algorithms, no search

problem is harder than any other problem.

NFLs can be proven in many ways including the original proof [WM95, WM97], an

adversary approach [Cul98], or a simple counting argument [RW99a]. One important

lesson we can learn from the results of NFL theorems is that without taking into

account any particular information of the search problem, no algorithm can perform

53



better on average than random search, which visits points in the search space uni-

formly at random. NFL theorems have been criticized as too general to be practically

applicable. We will use them here to illustrate the misconceptions in some efforts of

GA-hardness research.

3.3.3 Misconceptions in GA-hardness Research

Informally, research studies into GA-Hardness ask what makes a problem hard or easy

for GAs. This statement contains three important terms that needs to be elaborated:

problem, GAs, and hardness. The meaning of these terms have never been precisely

clarified and agreed. Many misunderstandings and misconceptions have been made

because of this. In this section, we point out some of the major misconceptions that

have made previous GA-hardness researches fumbled.

Misconceptions in The Problem Space: What Problems Should Be Used?

We have shown that there are three factors that cause a problem instance hard for a

GA: randomness, mismatch, and deception. The first misconception in the problem

space is that blurring the differences among these three factors and feeding GAs with

problems that are too hard to be meaningful. A random problem like the needle-in-the-

haystack is hard for all algorithms. Thus it is meaningless to use it as the test case.

For example, in Grefenstette’s paper “Deception Considered Harmful” [Gre93], the

needle-in-the-haystack problem is used as a counterexample to dismiss the utility of

deception theory and Building Block (BB) hypothesis [Gol89]. Although this example

does prove that deception is not the only factor for GA-hardness, it cannot rule out the

usefulness of schema theory and BB hypothesis in explaining the effectiveness of GAs

on structured problems [Gol89]. We just should not force BB hypothesis to apply also

on random problems. In [Gol02], Goldberg points out a similar concept of a “design

envelope” to emphasize the importance of bounding problem difficulty: “. . . no BB

searcher should be expected to solve problems that are in some way unbounded. . . ”.

A second misconception is using few, specific problem instances to support a
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general result. The size of most test instances used are less than 20 or 30 bits

[Gol87, Gre93]. We would all expect that the relative hardness of problem instances

to vary roughly with their size. A small problem, no matter what other character-

istics it has, would be easy for most algorithms to solve. The fact that a minimal,

deceptive problem does not cause a simple GA to diverge does not support that GAs

are “surprisingly” powerful [Gol87]. Similarly, the fact that a small problem with

high deception is easy for GAs to optimize also does not disprove deception’s role in

making problems with larger size hard for GAs [Gre93].

Another misconception in problem space is applying GAs on functions or problems

that are too general to be realistic. Much of the research on fundmental theory have

treated GAs as a generic search algorithm to solve all functions defined in the BBO

model, most of which are random problems and artificially-made functions [MFH91,

FM93a, FM93b, HG95] that we would never expect to meet in real world applications.

The problem space defined as f : {0, 1}∗ → R is actually too broad. P and NP

problems are only a small fraction of these problems. Most real world optimization

problems are NP-complete, and they are hard enough for GAs to deal with! In some

sense, working on pathological man-made functions is a waste of effort. Another

related viewpoint we want to mention here is that of the NFL theorems [WM95,

WM97], which have caused a great deal of debate in the genetic and evolutionary

community since first being published. Some researchers have directly applied NFL

theorems to GA and claimed that a GA is as poor as a random search, so a GA is

futile. This conjecture is discouraging, but it also overstates the case. NFL theorems

are proven over the space of all possible problems, while, in practice, we are only

interested in solving real-world optimization problems. For purpose of developing a

usable theory of GA-hardness, we should not care about a GA’s bad performance

on any single random problem or specific, artifically deceptive functions. Also, in

practice, if we have any problem-specific information, we are generally willing and able

to incorporate the information into GAs’ operators to speed up the GA performance.

Goldberg has made some other points [Gol02] against the argument from futility. We
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believe that the framework we have presented supports the assertion that “ . . .NFL

Theorem does not eat GA lunch . . . ” (Goldberg 2002).

Misconceptions in The Algorithm Space: What Are GAs?

GAs have been first considered only as a simulation of natural adaptive system

[Hol75], then as function optimizers [Bet81] and general purpose search procedures

[Gol89] that are assumed to converge to the global optimum. Furthermore, many

“advanced” operators have been invented and GAs have been changed from simple to

messy [Gol89, Gol02] to something almost unrecognized. The most common miscon-

ception in the algorithm space is considering GAs as a single algorithm and seeking a

universal GA’s dynamics and general separation of GA-hard and GA-easy problems.

Any efforts like this are doomed to fail because for a given problem, if we change the

configuration of parameters of GAs, we can get totally different convergence results

such that for one GA the problem is easy, but for the other GA it is hard. What

should we label it then, GA-easy or GA-hard? It is easy to see if allowing all possible

GA operators, GAs can actually model any search algorithms as defined in the BBO

model. So asking the hardness of a problem for GAs is the same as averaging the

hardness of the problem over all possible algorithms. NFL theorems [WM95, WM97]

have told us that averaging over the space of all possible search algorithms no problem

is harder than any problem.

Experience from algorithm design practice tells us that algorithms with similar

parameter values often have similar behavior on same problems. We should therefore

consider classifying GAs into subclasses by their parameter values. GAs in the same

subclass have similar parameters and are expected to have similar performance on

the same problem instances. As a consequence, research studies into GA dynamics

and GA hardness should be done separately on these subclasses of GAs.

Misconceptions in The Performance Measure Space: What Is GA-hardness?

In complexity theory [GJ79, Lee90, Pap94], the hardness or complexity of a problem

is measured by the time complexity of the provably best algorithm possible, which is
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a function of the size of the input. A problem is tractable if we can find a polynomial

time algorithm for it, intractable if only exponential time algorithm exists. Two

important complexity classes are P and NP . P is the class of polynomial time solvable

problems. NP is the class of polynomial time verifiable problems. NP -complete

problems are the hardest one in NP . Most real world optimization problems are

NP -complete. Some of them are even NP -hard to approximate. Assuming P 6= NP ,

it is impossible to find a polynomial time algorithm, including GAs, to solve a NP -

complete problem. However, for some subclasses of a NP -complete problem, it is

possible to find a GA that solves them in polynomial time if the GA can exploit

some structural characteristics of the problems. Therefore the goal of GA-hardness

research is to identify the characteristics of the instances that make GAs converge in

polynomial time. If a GA converges well in polynomial time on an instance class with

a common feature, we can say this instances class is easy for this GA (because of the

feature). Otherwise it is hard for this GA. Again, we consider different classes of GAs

with similar parameter setting rather than all GAs as a whole. One misconception in

practice is measuring GA’s performance only on a few instances without considering

the scaling issue. The argument made in section 3.3.3 applies here as well.

Another and more serious misconception is taking for grant the existence of a gen-

eral a priori GA-hardness measure that can be used to predict a GA’s performance

on the given instance. Many efforts have been put into searching for such a mea-

sure [Dav91a, GDH92, HG95, JF95, Nau98, NK98, NK00]. Ideally, people wish to

have a program that takes as inputs a specification of the problem instance and the

configuration of a GA and returns an estimation to the GA’s performance on that

problem so that the decision can be made in advance whether we should use GA or

not. Rice’s theorem [Hut01] has told us that in general it is impossible to compute

in advance a GA-hardness measure without actually running the algorithm on the

problem. This limits the general analysis, but it does not rule out the possibility of

inducing an algorithm performance predictive model from some elaborately designed

experimental results. For a parameterized real world optimization problem and a list
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of GAs with different configurations, we can design a controlled experiment to run

these algorithms on the problems, collect the data, and inducing a predictive model

from the data. This approach differs from traditional analytical method to study the

performance of algorithms. It relies more on empirical approaches to investigate how

algorithmic performance depends on problem characteristics.

Recently Rylander [Ryl01] has proposed a new definition of GA-hardness deter-

mined by the growth rate of the search space as a function of the size of the input

instance. Minimum Chromosome Length (MCL) is defined to measure the size of the

smallest chromosome for which there is a polynomial time computable representation

and evaluation function. GA complexity class NPG (the class of problems that take

more than polynomial time to solve) is defined as the problems that have a linear

MCL growth rate. A GA-reduction is defined as a MCL-preserving translation from

one problem’s representation to another. A problem is GA-hard if all other problems

in a particular class reduce to it. This theory has several important limitations. First,

it attempts to capture the notion that a problem is hard for a class if any problems

in this class can be reduced to it. In analyzing GA-hardness, however, we are re-

ally concerned with the running performance of a GA on the problem. The concept

“hardness” implies a poor runtime performance instead of the reducibility between

problems. Second, MCL seems to be hard to compute. Third, the complexity classes

defined using MCL are not much different from the complexity classes in traditional

complexity theory. It emphasizes only representation’s (MCL growth rate) role on

making a problem hard for GAs. By application of MCL, problems that have sublin-

ear MCL growth rates are hard for GAs. All NP-complete problems belong to this

type but still some of them can be solved by GA easily(converge in polynomial time).

So the theory can not handle this case. In general this approach is hard to apply in

practice and further refinement is needed.
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Related GA-hardness Research

In the early 1990s Goldberg [Gol93] suggested five factors that make problems hard for

GAs: Isolation, Misleadingness, Noise, Multimodality, and Crosstalk. Among them

isolation and noise can be considered as randomness, misleadingness as deception,

and crosstalk as mismatch. Multimodality is not an independent factor. In [Gol02]

Goldberg has built a new model of problem difficulty for GAs that consists of three

core difficulties: Noise, Scaling, and Deception. Respectively they correspond to

randomness, mismatch and deception in our model.

For a given GA, we have divided the problem space of the BBO model into random

problems, straightforward problems and deceptive problems by the mutual informa-

tion between the problem and the GA. Culberson [CL96, Cul98] has studied the BBO

model using adversarial approach in which an algorithm passes strings to an adver-

sary and gets back an evaluation. The indifferent adversary in his model corresponds

to random problems in our model. Similarly, a friendly adversary corresponds to

straightforward problems, a vicious or mischievous adversary corresponds to decep-

tive problems.

We have used Rice’s theorem to show the impossibility of having a predictive

GA-hardness measure based only on the description of the problem and the GA’s

configurations. Reeves and Wright [RW99b] have arrived at the same conclusion

using concepts of experimental design (ED). This result has also been verified by

failures of previous efforts of identifying such an indicator.

We have proposed to properly classify GAs by their parameter values and study

the dynamics of each class separately. De Jong holds the similar viewpoint. In

[DSG95], he says that, “. . . we are uncomfortable with the notion of a “GA-hard

problem” independent of these other details, unless we mean by such a phase that

no choice of GA properties, representations, and operators exist that make such a

problem easy for a GAFO to solve. . . ”.

We have also concluded that it is necessary to apply empirical methods to study

GA dynamics and GA hardness. This coincides with some other researchers’ point of
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view as well. Reeves & Wright [RW99b] propose to view GAs as a form of sequential

experimental design. Goldberg [Gol02] has committed to an engineer’s methodology

in which a Wright-like decomposition method is adopt to design competent GAs,

likening the design of a GA to that of an airplane in which the engineered object is

the thing rather than the theoretical model.

3.4 An Alternative Direction: Experimental Ap-

proaches

Driven by the infeasibility of analytical approaches, we turn to propose an inductive

approach to study problem hardness and algorithm performance.

For future directions of GA-hardness research, we suggest that research should

focus more on real world NP-complete optimization problems rather than man-made

functions. We also suggest that research should study the classification of various

GAs rather than considering them as a whole. Furthermore, research should give

up seeking a priori GA-hardness measures based only on the descriptive information

of the problem and the GA in favor of experimental algorithmic methods to learn

the predictive model from the posterior results of running various GAs on problem

instances with designed parameter settings. Such an experimental approach may

contain the following steps:

1. Pick up a real world optimization problem, for example, TSP.

2. Identify a list of problem characteristics that may affect GA’s performance.

3. Generate random test instances with different parameter settings.

4. Select a list of GAs with different configurations.

5. Run the GAs on these elaborately designed instances and collect the perfor-

mance data.

6. Apply proper data analysis tools or machine learning methods to build a pre-

dictive model out of the experimental data.
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7. For a new instance, analyze its characteristic and use the learned model to infer

the best GA to optimize it.

Similarly, for solving the automatic algorithm selection problem, we propose the

following experimental procedure.

1. Identify a list of feasible instance characteristics using domain knowledge.

2. Identify a list of candidate algorithms for solving the problem.

3. Generate a representative set of test instances with different characteristic value

settings uniformly at random.

4. Run the candidate algorithms on these elaborately designed instances and col-

lect the performance data.

5. Apply Bayesian network learning techniques to induce a predictive model (a

Bayesian network) out of the experimental data.

6. For a new instance, analyze its characteristic and use the learned Bayesian

network to infer the most appropriate algorithm to solve it.

3.5 Summary

This chapter studies the theoretical aspects of automatic algorithm selection. The

main conclusions include the undeciability of both the algorithm selection problem

in general and the algorithm selection for search. We have also developed a general,

abstract framework of both instance hardness and algorithm performance and have

applied it to discuss misconceptions in GA-hardness research. Finally, we propose

a more feasible inductive approach for GA-hardness research and for automatic al-

gorithm selection systems. The inductive approach mainly relies on experimental

approaches and machine learning techniques.
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Chapter 4

Some Multifractal Properties of
the Joint Probability Distribution
of Bayesian Networks

In this chapter, we report our discovery of some multifractal properties of the Joint

Probability Distributions (JPDs) of Bayesian networks. With sufficient asymmetry in

individual prior and conditional probability distributions, the JPD is not only highly

skewed (as shown by Druzdzel [Dru94]), but it is also stochastically self-similar and

has clusters of high-probability instantiations at all scales. Based on the discovered

multifractal property, we developed and tested a two-phase hybrid random sampling

and search algorithm for the MPE problem. The experimental results showed that the

multifractal property provides a good meta-heuristic for solving the MPE problem.

Since the MPE problem is NP-complete, the multifractal meta-heuristic could be

used to solve other hard optimization problems as well. These multifractal properties

also strengthen the connections between Bayesian networks and thermodynamics.

These connections have recently been exploited in popular Bayesian network inference

algorithms based upon models from statistical physics [YFW00, PA02], such as free

energy minimization.
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4.1 Motivation

Bayesian networks (BNs) [Pea88] provide a compact representation of the JPD of

an uncertain domain by specifying the JPD into the product of local prior and con-

ditional probability distributions. The JPD over its variables can be seen as being

created by a multiplicative process, combining prior and conditional probabilities

of individual variables. By applying the Central Limit Theorem, Druzdzel [Dru94]

demonstrated that “. . . asymmetries in these individual distributions result in JPDs

exhibiting orders of magnitude differences in probabilities of various states of the

model . . . In particular, there is usually a small fraction of states that cover a large

portion of the total probability space . . . ” (Druzdzel 94). Druzdzel’s result suggests

that considering only a small number of the most probable states can lead to good

approximations in belief updating. Some questions of interest are: where and how

can we find these high-probability instantiations in the space of JPDs? Is there any

internal structure in the JPD that can facilitate search? If so, how can we characterize

it? This paper attempts to answer these questions by demonstrating that the JPD

of a BN is a random multinomial multifractal created from a random multinomial

multiplicative cascade. By applying multifractal analysis, we show the existence of

multifractal structure within the JPD. More specifically, the JPD, as a multifractal

measure, can be partitioned into fractal subsets such that each subset supports a

monofractal measure, and the JPD consists of clusters of high-probability instantia-

tions at all scales. Based on these multifractal properties, we have also designed and

tested a new random sampling and search algorithm for finding the MPE.

4.2 Multifractal Analysis

4.2.1 Fractals and Multifractals

Fractals are extremely irregular, self-similar sets [Man82, EM92]. A fractal is charac-

terized by its fractal dimension. For example, the dimension of an irregular coastline

may be greater than 1 but less than 2, indicating that it is not simply a “line” but
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Figure 4.1: The Cantor Set

has some space-filling characteristics in the plane. The Cantor set [Man82] is the

oldest and simplest man-made1 fractal. As shown in Figure 4.1, it is constructed by

removing the middle third from the unit interval and the remaining two subintervals

have their middle third removed. This continues infinitely. Formally, the Cantor set

is defined as follows:

K =
∞⋂

n=0

Kn (4.1)

where K0 = [0, 1] and

Kn =
(

Kn−1

3

) ⋃ (
2

3
+

Kn−1

3

)
n = 0, 1 . . . . (4.2)

The dimension of a fractal set can be calculated by counting the number of covers

that are required to cover the set of interest. In the Cantor set, when n = 0, 1 box

of length 1 is needed to cover K0; when n = 1, 2 boxes of 1/3 are needed for K1,

etc. Let Nδ be the number of boxes with length δ that are required to cover K, the

1Here we only consider “mathematical constructs”. As pointed out by Dr. Rudolf Riedi, Romans
had made some fractal mosaics long time before.
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(Minkowski) fractal dimension is then defined as:

log Nδn(K)

− log δn

=
log(2n)

− log(3−n)
= log3 2 (4.3)

The main difference between a fractal and a multifractal is that the former refers

to a set while the latter refers to a measure. A measure µ assigns a quantity to

each member of a set (the measure’s support set), thus it defines a distribution of

that quantity over the support set. Multifractal analysis [Man89, EM92, Har01] is

related to the study of a distribution of physical or other quantities on a geometric

support set. The support may be a line, plane, or a fractal. Multifractal measures

are highly irregular and self-similar (exactly or stochastically). For instance, the

distribution of gold over a geographical map of the USA is very irregular. It is found

in high concentrations at only a few places, in lower concentrations at many places,

and in very low concentrations almost everywhere. This description holds for all

scales - be it on the scale of the whole country, one state, on the scale of meters,

or even at a microscopic scale. Many other quantities exhibit the same behavior,

i.e., the irregularity is the same at all scales, or at least statistically [Man89]. We

call this kind of self-similar measure a multifractal. The concept of multifractal was

originally introduced by Mandelbrot in the discussions of turbulence [Man72], and

later applied to many other contexts such as Diffusion Limited Aggregation (DLA)

pattern [BH91], earthquake distribution analysis [Har01] , and Internet data traffic

modelling [RV97]. A multifractal is often generated by an elementary iterative scheme

called multiplicative cascade.

4.2.2 Multifractal Spectrum

How can we characterize a multifractal measure? Clearly, we need more than just

a fractal dimension. Simply counting the boxes as we did to the Cantor set is like

counting coins without caring about the denomination. We must therefore find a

description that assigns the measure in each box a weight [EM92]. In the following

example, we use the Cantor measure [RV97] to illustrate the basic characterization of

a multifractal. Consider the Cantor set again. Now we extend it by allocating a mass
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Figure 4.2: The Generating of the Cantor Measure

or a probability to each subinterval at each division. For example, we allocate 2/3

of the existing probability in an interval being divided to the right-hand subinterval,

and 1/3 to the left-hand. The first four steps of generating the Cantor measure is

shown in Figure 4.2.

The first step of multifractal analysis is to define α, the coarse Hölder exponent

[Man89, EM92, Har01] , as the logarithm of µ, the measure of the box, divided by

the logarithm of δ , the size of the box.

α =
log µ(box)

log δ
(4.4)

The multiplicative construction of µ makes it clear that the probability µ of a sequence

of intervals will decay exponentially fast as the interval is being divided and shrinks

down to a point. Thus α can be thought of as the local degree of differentiability of

the measure, the rate of local probability change [Har01], or the strength of singularity

[Rie99]. Once α is defined, we would like to draw the frequency distribution of α as

follows: For each value of α, we count the number Nδ(α) of boxes having a coarse
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Hölder exponent equal to α; Then we define fδ(α) as the logarithm of Nδ(α) divided

by the logarithm of the size of the box.

fδ(α) = − log Nδ(α)

log δ
(4.5)

fδ(α) can be loosely interpreted as an approximation to the Minkowski fractal dimen-

sion of the subsets of boxes of size δ having coarse Hölder exponent α. The function

f(α) = limδ→0 fδ(α) is called the multifractal spectrum. It characterizes a multifrac-

tal. The graph of f(α), often called f(α) curve [Man89, Har01], is shaped like the

symbol “
⋂

”, usually leaning to one side. Usually, there are bounds αmin and αmax

such that αmin < α < αmax. The α value of the peak is called α0. Figure 4.3 plots

the f(α) curve of the Cantor measure.

From the preceding discussion we can see that the basic idea behind multifractal

analysis is to classify the singularities of the measure by strength. This strength

is denoted by a singularity exponent α - the coarse Hölder exponent. Points of

equal strength lie on interwoven fractal subsets. Each of these fractal subsets is a

monofractal with a fractal dimension f(α). This is one of the several reasons for the

term multifractal.

4.2.3 The Binomial Multifractal Cascade on [0, 1]

Many multifractal measures can be generated from an elementary iterative pro-

cedure called multiplicative cascade. The binomial measure is the very simplest

multiplicatively-generated multifractal measure. Let m0 and m1 be two positive num-

bers adding up to 1. At stage 0 of the cascade, we start the construction with the

uniform measure µ0 on [0, 1]. At step k = 1, the measure µ1 uniformly spreads mass

(or probability) equal to m0 on the subinterval [0, 1/2] and mass equal to m1 on the

subinterval [1/2, 1]. At step k = 2, [0, 1/2] is split into two subintervals [0, 1/4] and

[1/4, 1/2], which respectively receive a fraction m0 and m1 of the total mass µ1 on

[0, 1/2]. Applying the same procedure to [1/2, 1], we obtain:

µ2[0, 1/4] = m0m0, µ2[1/4, 1/2] = m0m1 (4.6)
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Figure 4.3: The f(α) Curve of The Cantor Measure

µ2[1/2, 3/4] = m1m0, µ2[3/4, 1] = m1m1 (4.7)

Iteration of this procedure generates an infinite sequence of measures. At step k + 1,

we assume the measure µk has been defined and µk+1 is defined as follows: Consider

an arbitrary interval [t, t + 2− k], where the dyadic number t is of the form:

t = 0.η1η2 . . . ηk =
k∑

i=1

ηi2
−k (4.8)

in the counting base b = 2. We uniformly spread a fraction of m0 and m1 of the mass

µk[t, t + 2 − k] on the subinterval [t, t + 2 − k − 1] and [t + 2 − k − 1, t + 2 − k]. A

repetition of this scheme to all subintervals determines µk+1. The measure µk+1 now

is well defined. Figure 4.4 shows the measure for the binomial multiplicative process

after k = 11 with m0 = 0.25 and m1= 0.75.

The construction of binomial multifractal can be extended in several ways. First,

at each stage of the cascade, intervals can be divided not in 2 but in b > 2 intervals of

equal size. This defines the class of multinomial multifractals. Second, the allocation

of mass between subintervals at each step of cascade can be randomized by using a
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Figure 4.4: Binomial Measure with m0 = 0.25 and m1= 0.75

random variable as the multiplier. This defines random multifractals. Although the

multipliers need not to be discrete, we shall use discrete ones for simplicity.

4.2.4 Probabilistic Roots of Multifractals

Because multifractal measures can be generated by, or mapped onto, multiplicative

cascade, the coarse Hölder exponent can be expressed as a sum of random variables

by definition [Man89]. The behavior of sums of random variables is a central topic

in probability theory. There are three theorems dealing with such sums: the Law of

Large Numbers (LLN), the Central Limit Theorem (CLT), and the Large Deviation

Theorem (LDT). The LLN says that almost surely (with probability of 1) the sample

average will converge to the expectation when k increases to infinity. The LLN

guarantees the existence of α0 and its role as the most probable Hölder exponent.

But the LLN only holds in the limit δ → 0, whereas we are often dealing with a

finite number of multiplicative steps k. Thus, the deviation from the expected value

becomes important for finite k. The relevant information is yielded by the CLT and,
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far more important, by the LDT. The CLT is concerned with small fluctuations around

the expected value. In this context, it shows that the appearance of a quadratic

maximum in the f(α) of the binomial measure is not a coincidence. Consider a

random variable with finite expectation EX and Pr(X > EX) > 0. The large

deviation theory is concerned with very large fluctuations around the expected value,

namely the behavior of

lim
k→∞

Pr{ 1

K

k∑

h=1

Xh − EX ≥ δ} (4.9)

as a function δ and k. The LLN tells us that,

lim
k→∞

Pr{ 1

K

k∑

h=1

Xh − EX = 0} = 1 (4.10)

So for δ = 0, the above quantity vanishes with speed 0. For all other δ, we expect

Pr{ 1
K

∑k
h=1 Xh − EX ≥ δ} to converge to 0 as k increases to infinity. The question

is, “How fast does it vanish?”. The LDT states that it not only converges to 0, but

also does so exponentially fast. In this section, we omit some details, but generally

speaking, f(α) can be deduced via the large deviation theory and this provides a

probabilistic basis for multifractals [EM92, Kes01]. Furthermore, large deviation

theory in the continuous and/or unbounded cases exists as well, providing a full

justification of the so-called thermodynamic formalism of multifractals. We refer the

reader to for more details [EM92, Man89, Har01, Kes01].

4.2.5 Thermodynamics Formalism of Multifractals

There are more than one way to get to the multifractal spectrum f(α). An alter-

native method is the method of Moments in which we first define partition func-

tion, analogous to the partition function in thermodynamics and statistic physics

[EM92, Man89],

Zq(δ) =
N(δ)∑

i=1

µq
i =

N(δ)∑

i=1

(δαi)q (4.11)

Denote the number of boxes for which the coarse Hölder exponents satisfied α < αi <

α + dα by Nδ(α)dα. The contribution of the subset of boxes with αi between α and
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α + dα to Zδ(α) is Nδ(α)(δα)qdα. Integrating over dα we obtain,

Zq(δ) =
∫

Nδ(α)(δα)qdα (4.12)

If Zδ(α) ∼ δ−f(α), it follows that

Zq(δ) =
∫

δqα−f(α)dα (4.13)

By keeping only the dominant contribution in the equation, and introducing

τ(q) = qα(q)− f(α(q)) (4.14)

, the partition function will scale like Zq(δ) ∼ δτ(q). It is easy to see that

dτ(q)

dq
= α(q) (4.15)

This means that f(α) can be computed from τ(q) and vice versa. The relation between

f(α) and τ(q) is called a Legendre transform [Man89]. An interesting consequence

is that flexibly rich thermodynamic content is hidden in the concept of multifractals.

From preceding discussion, we can easily draw a correspondence between Z(q) and

the thermodynamic partition function Z(β), between q and the temperature T (as the

inverse of T ), between α and the energy, between f(α) and the entropy, and between

τ(q) = qα − f(α) and the Gibbs free energy G = H − TS. For more information on

this topic, the interested reader is referred to [Man89].

4.3 Bayesian Networks as Random Multinomial

Multifractals

A Bayesian network [Pea88] is a Directed Acyclic Graph (DAG) in which nodes

represent random variables and arcs represent conditional dependence relationships

among these variables. Each node Xi has a conditional probability table (CPT) that

contains probabilities of a variable value given the values of its parent nodes, denoted

as π(Xi). A BN represents the exponentially sized joint probability distribution (JPD)
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in a compact manner. Every entry (an instantiation of all nodes) in the JPD can be

computed from the information in the BN by the chain rule:

P (x1, . . . , xn) =
n∏

i=1

P (xi|π(xi)) (4.16)

From the multifractal viewpoint, the JPD defined by a BN with n nodes is a measure

of belief distributed on an n-dimensional space of random events. Given a topological

ordering of all nodes, we can map the n-dimension space to a linear interval by

assigning each event an integer number as its address on that interval. For example,

the linear interval for an 8-node binary BN is [0, 255]. The JPD of a BN can be

considered as being generated from a multiplicative cascade in which number of steps

n equals to the number of nodes. At each step of the cascade, intervals are divided

into b subintervals, where b is the number of states of the current node, and the

multiplier for allocating the probability is a random variable defined by the CPT of

the current node. It is easy to see that, in the most general case, a BN corresponds

to a multifractal generated by a random multinomial multiplicative cascade. The

simplest multifractal - the binomial measure - corresponds to the simplest BN - a

binary BN without links. Consider such an 8-node binary BN in which each node

has a prior probability distribution of (0.25, 0.75). The cascade contains 8 steps and

generates a JPD of 256 instantiations as shown in Figure 4.5. This is actually the

simplest multifractal - the binomial measure.

Now let us consider the process of an agent’s incremental understanding of some

uncertain domain as a multiplicative cascade process. At the beginning, the agent

first identifies all random variables. Before it knows anything about the causal rela-

tionships between these variables, it has to assume a uniform distribution spreading

belief evenly to all states. The agent’s belief is redistributed as it learns more about

the domain; i.e., the connections between nodes and the CPT values. The process of

belief redistribution is a typical multiplicative cascade process similar to any other

multiplicative cascade in the context of multifractals. For example, a turbulence cas-

cade model describes the nature of energy dissipation in a turbulent fluid flow. With

turbulence, the energy is introduced into the system on a large scale (storms, or stir-
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Figure 4.5: JPD of the Simplest BN with 8 Nodes

ring a bowl of water), but can only be dissipated in the form of heat on very small

scales where the effect of velocity, or friction between particles, becomes important.

Cascade models assume that energy is dissipated through a sequence of eddies of

decreasing size until it reaches sufficiently small eddies where the energy is dissipated

as heat. In the case of Bayesian networks, the belief is introduced to the domain from

a high level as a uniform distribution. As we learn the CPTs, we capture the increas-

ingly refined causal structure of the domain. These substructures keep redistributing

our belief until we learn all about the domain.

4.4 Case Study: Asia and ALARM13

In this section, we study the multifractal properties of the joint probability distribu-

tions of two example networks: Asia and ALARM13.
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Figure 4.6: JPDs at the First Three Steps of the Multiplicative Cascade of the Asia
Network

4.4.1 The Self-similarity of the JPD: Asia

We first use the Asia network [Nea90] to demonstrate the process of an agent’s incre-

mental understanding of an uncertain domain as a binomial multiplicative cascade

process, and to show the JPD’s self similarity property. Asia is a small binary BN

containing 8 nodes, so its JPD has a total of 28 = 256 instantiations.

Figure 4.6 shows the changing of the JPD during the first three steps of the

cascade process of Asia network; i.e., after the CPTs of node VistAsia, Smoking and

Tuberculosis are learned sequentially. From Figure 4.6, we can clearly see how the

belief is redistributed as more knowledge about the domain is learned.

Figure 4.7 is the final JPD after all nodes’ CPTs are learned and Figure 4.8 is the

second half of the final JPD. Comparing these two figures, we can see the stochastic

and self-similarity properties of the JPD.
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Figure 4.7: JPD of the Asia Network

Figure 4.8: Second Half of the JPD Illustrating the Self-similarity Property
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Figure 4.9: (1) Number of Instantiations At Each Order (2) Probability Sum of
Instantiations At Each Order

4.4.2 The Skewed JPD: ALARM13

In the following we analyze the JPD of the ALARM13 [Dru94], a subset of the

ALARM network, to demonstrate its multifractal characteristic and clustering prop-

erty. ALARM13 was the same network analyzed in [Dru94]. It contains 13 variables,

resulting in 525,312 non-zero states. The probabilities of these states were spread

over 23 orders of magnitude. Figure 4.9 shows the histograms of the number of in-

stantiations distributed at each order and their contribution to the total probability

space. The X-axis is the negative order of magnitude in both figures. Figure 4.9.1

shows that the histogram of number of instantiations at each order appears to be

a normal distribution. Given the logarithmic scale of the X-axis, it shows that the
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Figure 4.10: The f(α) Curve of the ALARM13’s JPD

actual distribution is a lognormal. The peak of figure 4.9.1 is at the order of 10−14.

It contains 73,256 instantiations, but its contribution to the total probability space

is only 2.9E − 09. From Figure 4.9.2 we can see that high-probability instantiations,

although few in number, dominate the joint probability space. Of all instantiations,

there is one with probability around 0.505, 10 with probabilities between [0.1, 0.01]

and the total probability of 0.28, 48 with probabilities between [0.01, 0.001] and the

total probability of 0.13, 208 with probabilities between [0.001, 0.0001] and the total

probability of 0.058. The 267 most likely instantiations (0.05% of the total of 525,312)

covers 97.45% of the total probability space. This highly skewed result has been ana-

lyzed by Druzdzel [Dru94]. In the following we show the multifractal structure of the

JPD and the way instantiations at different orders of magnitudes fill the space.

4.4.3 The Multifractal Spectrum of the ALARM13

Applying multifractal analysis to ALARM13’s JPD, we get its multifractal spectrum,

the f(α) curve, as shown in Figure 4.10. The X-axis is the coarse Hölder exponent
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α, Y -axis is f(α) - the fractal dimension of the subset of all instantiations with the

same α. This f(α) curve confirms that the JPD of a Bayesian network is a mul-

tifractal. It describes how these instantiations fill the probability space from the

point of view of fractal dimension. We can see in Figure 4.10 that high-probability

instantiations (corresponding to small α) have a low dimension, which means that

they fill the probability space in a very “sparse” way; i.e., there are clusters of high-

probability instantiations. The peak of Figure 4.10 has a fractal dimension of 0.79,

and the corresponding coarse Hölder exponent α is around 2.5. By the definition of

α, this corresponds to instantiations with probability on the order of 10−15. These

instantiations are around the peak of Figure 4.9.1. This means that these instanti-

ations fill the probability space in a very “dense” way; i.e., they are almost all over

the space. Finally, instantiations with very low probabilities (α = 3.8) also have low

dimensions (f(α) = 0.32). Again, this means that low-probability instantiations (rare

events) distribute sparsely as well, and clusters of them can be expected. This yields

a mathematical description of the inner structure of the JPD: there are clusters of

high-probability instantiations and low-probability instantiations, but instantiations in

the middle are distributed almost all over. Interestingly, this pattern coincides with

the way that people live in the real world; i.e., high-income people tend to live in the

same community, as do low-income people, but the middle-class are located all over.

4.4.4 Quantifying the Clustering Property

To show the clustering property more clearly, we draw the distribution of high-

probability instantiations and the distribution of low-probability instantiations in

Figure 4.11. Figure 4.11.1 contains all instantiations with a probability higher than

0.0001 in which X-axis is the “address” of instantiations ranging from 0 to 525,312

and Y -axis is the actual probability value. Figure 4.11.2 contains all instantiations

lower than 10−20 in which Y -axis is the “address” of instantiations and X-axis is just

the series number of each instantiation (note we use a different X-Y here because the

actual values are too small to be drawn neatly). We can see clearly there are clusters
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Figure 4.11: (1) The Clusters of High Probability Instantiations (2) The Clusters of
Low Probability Instantiations

in both graphs.

Having shown the clustering property, the next thing we want to do is to quantify

this property. We use the Hamming Distance between bit string representations of

two instantiations to measure how far they are located from each other. An instan-

tiation is represented as a bit string “b1b2 . . . bn” where n is the number of variables

in the domain and bi is the state index of each variable. For example, the Hamming

distance between instantiation “00001100” and “00100001” is 4. High-probability

instantiations should have small Hamming distances between each other to be a clus-

ter, because of the clustering property. We draw the Averaging Hamming distance

(AHD) graph for the most likely instantiation in Figure 4.12(a). The X-axis is the
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negative of the order of magnitudes; the Y -axis is the AHD between the most likely

instantiation and all instantiations at each order of magnitude. From Figure 4.12(a)

we can see that the instantiations with lower probabilities have a larger Hamming

distance from the most likely instantiation; i.e., they locate far away from the most

likely instantiation. We also draw the same figure for the lowest instantiations in

Figure 4.12(b). In Figure 4.12(c) we put together 23 AHD graphs for instantiations

of all orders to provide a global picture. Figure 4.12(c) consists of 23 segments of

curves corresponding to 23 orders of magnitudes. Each curve consists of 23 points

and represents the AHD graph of a randomly picked instantiation at that order. For

example, the first segment in Figure 4.12(c) is Figure 4.12(a), and the last segment is

Figure 4.12(b). From Figure 4.12(c) we can see that the instantiations in the middle

order of magnitudes are located at almost the same distance from all other orders

(7 < AHD < 9); i.e., they can be found at almost all places. This finding supports

our previous analysis of the expected distribution pattern.

4.5 A Multifractal Search Algorithm for Finding

the MPE

The JPD’s multifractal property can be used as a meta-heuristic to develop new search

algorithms for finding the MPE. Since the search space is a multifractal, both good

and bad solutions will be clustered together. Hence the search should be divided

into two phases: first identify the “good communities”, then localize the search to

these regions. Also, the quality of the community should be evaluated along with the

current search point in order to direct the search. If point A is better than point

B, but B’s neighbors are better than A’s, we should move B to look for the global

optimal. This helps the searcher escape the local optimal where simple hill climbing

gets stuck. Consider the following scenario: suppose we are asked to find the best

house in a city. We would first drive around to identify several areas that look good.

Then we would intensively search each area. When the neighborhoods get better, our

chance of hitting the best house gets higher too.
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Figure 4.12: The Average Hamming Distance Graphs
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Input: A BN (G,P ) and an evidence set E.

Output: A complete assignment u = (u1, . . . , un).

Step 1: Use the sampling algorithm to generate a set of initial good points S.

Step 2: For each point in S, start a hill climbing search using Neighborhood
Quality as the evaluation function, then put all local optima into S∗.

Step 3: For each point in S∗, start a normal hill climbing search and return the best
solution so far as the MPE.

Figure 4.13: Hybrid Random Sampling And Search Algorithm for Finding The MPE

We have developed a two phase Sampling-and-Search algorithm to solve the MPE

problem, based on these meta-heuristics. This algorithm is designed to find the most

probable explanation (a complete assignment) given the observed evidence. The

general MPE problem is NP-complete [Shi94] and hard to approximate [AH98]. In

the first phase of the algorithm, forward sampling (or any other feasible method)

is used to quickly identify a set of good communities. In the second phase, a hill

climbing search using Neighborhood Quality as the evaluation function is started for

each community. An additional “repair” phase can be added by using a set of “elite

solutions” and a set of “worst solutions” collected during the search process. These

would refine the final solutions by flipping the variable values that do not agree with

the majority “elite solutions”, or those that agree with the most “worst solutions”.

When the stop rule is satisfied, it returns the best solution so far as the MPE.

The algorithm’s performance is determined by two factors: how reliably the sam-

pling algorithm brings the searcher to places close to the global optimal, and the

strength of Neighborhood Quality, the evaluation function, to bring the searcher from

a near optimal place to the global optimal. The Neighborhood Quality of a search
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point is defined as the sum of the likelihoods of all its nearest neighbors. It can be

approximated by randomly drawing samples from its neighbors. The sampling radius

can be set to a small positive value k.

We expected that the skewness of the CPTs would have an influence on the perfor-

mance of the algorithm. Therefore, in our experiments we randomly generated three

groups of networks with different degrees of CPT skewness to test the algorithm:

skewed, normal, and unskewed. The skewness of the CPTs is computed as follows:

[JN96]. For a vector (a column of the CPT table), v = (v1, v2, . . . , vm), of conditional

probabilities,

skew(v) =

∑m
i=1 | 1

m
− vi|

1− 1
m

+
∑m

i=2
1
m

(4.17)

The skewness for the CPT of a node is the average of the skewness of all columns.

The skewness of the network is the average of the skewness of all nodes. The skewness

of these three groups of networks were set to around 0.9, 0.5, and 0.1 respectively.

Each group consisted of 20 networks with binary nodes. The number of nodes were

100, and the number of edges were 120 ∼ 150. These networks were set to be sparse

enough so that the exact MPEs could be computed. We randomly generated 10 evi-

dence values for each network; hence, the size of search space is 290. We used Hugin

to compute the exact MPEs. For each group of networks, we counted the number

of times when exact MPEs were found. We also computed the average relative error

(ratio of the absolute error to the exact MPE value) and recorded the average Ham-

ming distance between the returned MPE and the exact MPE. Table 1 summarizes

the experimental results. From the results we can see that normally-skewed networks

are the easiest ones for the algorithm, and unskewed networks are the hardest. In

20 normally-skewed networks we were able to find exact MPE in 19; and the one

missed is very close to the global optimal (only 2 bits difference out of 100). Of 20

unskewed networks we were able to find exact MPE in only 4 of them. The average

error and average Hamming distance between the returned MPE and the exact MPE

are also the largest ones. These results imply that if the network is unskewed (most

distributions are nearly uniform), finding MPE will be hard because the search space
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Table 4.1: Results on Randomly Generated Networks

#solved error AHD to exact
skewed 12/20 0.0242 1.25(25/20)
normal 19/20 0.0029 0.1(2/20)

unskewed 4/20 0.0798 3.9(78/20)

is flat. On the other hand, if it is highly skewed it will also bring trouble to the search

algorithm because of the attractiveness of these steep local optimums.

4.6 Summary

We have demonstrated that the underlying JPDs of Bayesian networks are multifrac-

tals created by random multiplicative cascade processes. The JPD that has many

orders of magnitude differences in probabilities of various instantiations is not only

highly skewed, but also stochastically self-similar and exhibits clustering properties.

The multifractal spectrum of the JPD describes how instantiations at different orders

fill the joint distribution space with different fractal dimensions. In particular, both

high and low probability instantiations tend to form clusters in the joint distribu-

tion space. Even though we discussed the model as a whole, the result will hold

for its self-contained parts as well. we also hypothesize that it holds for dynamic

models. The f(α) curve will show up as long as a random multiplicative cascade

process is involved. The significance of this analysis is that it provides important

information about characteristics of the joint probability distribution. Particularly,

the clustering property can be a very useful meta-heuristic for searching the MPE.

This research also bridges an analytical gap between multifractal and BNs and sug-

gests some very interesting research directions. As we have seen, multifractals have

a deep probabilistic root and a rich thermodynamic content. The fact of BN being

a multifractal draws our attention to connection between thermodynamics and BNs

[YFW00, PA02]. Also, because the MPE problem is NP -Complete, we should also
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expect to observe the same multifractal structure in the solution space of other hard

combinational problems such as MAXSAT and TSP. Applying the multifractal meta-

heuristic to solve these problems would be a very interesting topic to investigate in

the future.

The JPD’s multifractal property also provides a potential instance hardness mea-

sure to be used in algorithm selection for the MPE problem. One possible future

direction is to study how the multifractal property of a Bayesian network’s JPD in-

fluences various MPE algorithms’ relative performance. If the multifractal property

can differentiate the MPE algorithm space very well, then we can try developing an

efficiently computable measure to characterize it and use it as a predictive measure

for the corresponding MPE algorithm’s performance.
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Chapter 5

Machine Learning Techniques

In this chapter, we review some machine learning techniques that will be used to

construct algorithm selection systems for sorting and the MPE problem. This in-

cludes data preprocessing methods such as feature selection and discretization; ma-

chine learning algorithms such as decision tree learning, the naive Bayes classifier,

and Bayesian network learning; some basic methods to evaluate the learned models

such as cross-validation and confusion matrix; and three meta-learning schemes: bag-

ging, boosting, and stacking. Finally, we give an overview of the process of applying

machine learning techniques to solve the algorithm selection problem.

5.1 Machine Learning and Data Mining

5.1.1 Introduction

Our goal is to experimentally collect training data on problem characteristics and

algorithm performance, and to induce a predictive algorithm selection model from

the training data. This is a typical task in machine learning [Mit97] and data mining

[WF99].

The goal of machine learning is to build computer programs that improve auto-

matically with experience. Dating mining is about automatically analyzing data and

discovering valuable implicit patterns and regularities. For example, one data mining

application is the process of discovering the customer loyalty pattern from a database
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of customers’ choices along with customers’ profiles. Data mining involves machine

learning in a practical way. Many machine learning algorithms have proven to be of

great practical value in data mining. More precisely, we define machine learning as

follows [Mit97]:

Definition 19 (Machine Learning) A computer program is said to “learn” from

experience E with respect to some class of tasks T and performance P , if its perfor-

mance at tasks in T , as measured by P , improves with experience E.

Machine learning can be either supervised or unsupervised. In supervised learning,

there is a specified set of classes and each example of the experience E is labelled with

the appropriate class. The goal is to generalize from the examples so as to identify

to which class a new example should belong. This task is also called classification.

In contrast to supervised learning is unsupervised learning. The goal here is often

to decide which examples should be grouped together, i.e., the learner has to figure

out the classes on its own. This is usually called clustering. In this thesis, we will be

concerned with supervised learning.

5.1.2 Example: the Weather Problem

In a typical supervised machine learning problem, the experience E, or the data, is

represented as a set of training examples or instances. Each example is described by

a fixed number of features, or attributes. Features typically take two types of values:

nominal or numeric. Among all of the features, there is a special one that serves

as a label denoting the class of this example. The task T is to classify examples.

The performance P is simply the classification accuracy. There is usually another

set of examples called testing examples. The training examples are used to produce

the learned model and the testing examples are used to evaluate the classification

accuracy. When testing, the class labels are not presented. The algorithm takes as

input a test example, and returns as output the class label for that example.

Now let us look at a simple example: the Weather problem. The dataset is shown

in Table 5.1. It contains 14 examples describing the weather of days. Each example
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Table 5.1: The Weather Problem

Instance# Features Class
Outlook Temperature Humidity Windy Play

1 sunny 85 85 FALSE no
2 sunny 80 90 TRUE no
3 overcast 83 86 FALSE yes
4 rainy 70 96 FALSE yes
5 rainy 68 80 FALSE yes
6 rainy 65 70 TRUE no
7 overcast 64 65 TRUE yes
8 sunny 72 95 FALSE no
9 sunny 69 70 FALSE yes
10 rainy 75 80 FALSE yes
11 sunny 75 70 TRUE yes
12 overcast 72 90 TRUE yes
13 overcast 81 75 FALSE yes
14 rainy 71 91 TRUE no

has five attributes: Outlook, Temperature, Humidity, Windy and Play. “Play” is the

class attribute denoting whether the day is a good one for sports or not. The task T

is to learn a model from the data and to use the model to predict whether a given

day being a good day for sports is “yes” or “no”.

5.1.3 The Learning Problem for Automatic Algorithm Selec-
tion

In our algorithm selection problem, the task T is to learn how to predict the best

algorithm for an arbitrary instance according to its features. The target function we

want to learn is a discrete-valued function V : F → A, which maps any problem

instance characteristic vector to its best algorithm. The experience E is the data

collected from algorithmic experiments. The performance P is the accuracy of algo-

rithm selection. We state the algorithm selection learning problem as follows:
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The algorithm selection learning problem:

Task T : selecting the best algorithm performance.

Measure P : percent of correct algorithm selection predictions.

Training experience E: results collected from algorithmic experiments.

Since the target function, Best Algorithm(f), has discrete values, this kind of

task is often referred to as a classification problem. The task of such problems is to

classify the examples into one category from a discrete set of possible categories. In

our research, the set of categories is the set of all candidate algorithms.

One perspective on machine learning is viewing learning as the process of search-

ing a very large space of all possible hypotheses in order to determine the one that best

fits the available training data and any prior knowledge held by the learner [Mit97].

According to this perspective, our hypotheses space consists of all possible depen-

dency relationships between problem characteristics and algorithm performance. A

hypothesis space can be defined by more than one representation, such as linear func-

tions, logical descriptions, decision trees, artificial neural networks, and so on. For

each of these hypothesis representations, the corresponding learning algorithms takes

advantage of a different underlying structure of the search space. Throughout this

thesis, we will mainly consider three representations and the corresponding learning

algorithms: decision tree [Qui86, Mit97], the naive Bayes classifier [Mit97, JL95], and

Bayesian networks [Pea88, Nea90, RN95].

5.2 Machine Learning Algorithms

5.2.1 Decision Tree Learning

Decision tree learning is one of the most popular inductive learning methods. It

has been applied to a broad range of tasks from medical diagnosis to credit risk

assessment. In decision tree learning, the learned function is represented by a decision

tree. Decision trees are essentially sets of “if-then” rules. They classify training

examples by sorting them down the tree from the root to some leaf node, which
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ID3(Examples, Target, Attributes)
Create a root node;
If all Examples have the same Target value, give the root this label;
Else if Attributes is empty label the root according to the most common
value;
Else begin

Calculate the information gain for each attribute, according to the
average entropy formula;

Select the attribute, A, with the lowest average entropy (highest
information gain) and make this the attribute tested at the root;
For each possible value, v, of this attribute

Add a new branch below the root, corresponding to A = v;
Let Examples(v) be those examples with A = v;
If Examples(v) is empty, make the new branch a leaf node labelled
with the most common value among Examples;
Else let the new branch be the tree created by
ID3(Examples(v), Target, Attributes - A);

end begin
end

Figure 5.1: ID3 Algorithm for Decision Tree Learning

provides the classification of the example. Each node in the tree represents a test of

some attribute of the training example, and each branch corresponds to one of the

possible values for its source node (attribute).

In the language of logic, decision trees represent a disjunction of conjunctions of

constraints on the attribute values of training examples. Each path from the root

node to a leaf corresponds to a conjunction of attribute tests. The whole tree is a

disjunction of these conjunctions.

Decision Tree Learning Algorithms: ID3

ID3 and its successor, C45, are two of the most important algorithms for learning

a decision tree from data. ID3 was developed by Quinlan in 1986 [Qui86]. It was

extended to C45 later in 1993 [Qui93].
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The basic algorithm, ID3, learns a decision tree by constructing it top-down. At

each node, the following question is asked: “which attribute should be tested here?”

The question is answered using a statistical test to determine how well an attribute

alone classifies the training examples. The best attribute is then selected and used

as the test at the current node of the tree. A descendant of the node is created for

each possible value of this attribute. The training examples are also sorted to the

appropriate descendant node, i.e., down the branch corresponding to the example’s

value for this attribute. The entire process is repeated using the training examples

associated with each descendant node to select the best attribute to test at that point

of the tree. Attributes that have been incorporated higher in the tree are excluded.

Therefore any attribute can appear at most once along any path through the tree.

This process continues for each new leaf node until: (1) every attribute has already

been included along this path through the tree, or (2) all training examples associated

with this leaf node all have the same target attribute values, i.e., they all belong to

the same classification.

We can see that ID3 is essentially a top-down, greedy algorithm searching through

the space of all possible decision trees because it never looks back to reconsider

previous choices.

The most important issue in the ID3 algorithm is how to select which attribute

to test at each node in the tree. Intuitively, we want to select the attribute that is

most useful for classifying examples at this point. In order to measure this statistical

property, we will need to define information gain that measures how well a particular

attribute classifies the training examples according to their target attribute values.

We begin by defining entropy in order to define information gain precisely.

Definition 20 (entropy) Suppose S is a collection of training examples. Each ex-

ample has several attributes and one of them is called the target attribute that can

take on k different values. The entropy of S relative to this k-wise classification is

define as

Entropy(S) =
c∑

i=1

−pi log2 pi (5.1)

91



Information gain, a measure of the effectiveness of an attribute in classifying

the training examples, is simply the reduction in entropy caused by partitioning the

examples according to this attribute.

Definition 21 (Information Gain) Suppose S is a collection of examples and A is

an attribute of the examples. The information gain Gain() of an attribute A relative

to S is defined as

Gain(S,A) = Entropy(S)− ∑

v∈V alues(A)

Sv

S
Entropy(Sv) (5.2)

Inductive Bias in ID3

Given a collection of training examples S, there are typically many decision trees that

are consistent with S. Because of ID3’s simple-to-complex greedy search strategy,

ID3 chooses the first acceptable tree it sees in its search process. We say that ID3’s

inductive biases are: (1) in favor of shorter trees over longer ones, (2) in favor of

trees that place the attributes with high information gain closest to the root. ID3’s

inductive bias is partly justified by the famous Occam’s Razor which states that

“Entities should not be multiplied unnecessarily”. In the language of machine learning,

it means that “Prefer the simplest hypothesis that fits the data”. Another argument

is as follows: because there are fewer short hypotheses than long ones, it is less likely

that a short hypothesis coincidentally fits the data. Debates over these arguments

remain unsolved even today.

C4.5 Extensions

A variety of extensions to the basic ID3 algorithm has been developed and the result-

ing algorithm is called C4.5 [Qui93]. These extensions [WF99] include incorporating

numeric attributes, handling missing values, and avoiding overfitting by rule post-

pruning.

Numeric attributes Many real world applications provide numeric data. C4.5

discretizes the numeric attribute A by picking a threshold that produces the greatest
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information gain. The procedure for binary splits is as follows: First, sort all examples

according to the numeric attribute A. Then, identify adjacent examples that differ

in their target classification and generate a set of candidate threshold in between the

corresponding values of A. It has been shown in [Fay91] that the value of the threshold

that maximizes information gain must always lie at such a boundary. Finally, these

candidate thresholds are evaluated by comparing the information gain associated with

each and the best one is used to discretize A into a binary value. Extensions that

spilt numeric attributes into multiple intervals rather than binary are discussed in

[FI93].

Missing values Some dataset may contain missing values for certain attributes. One

strategy to deal with this issue is to assign it the most common value at the current

node. A more complex procedure [Mit97, WF99] is to assign a probability to each of

the possible values of A. These probabilities can be estimated based on the observed

frequencies of the values of A at the current node. The example with missing values

is then converted into fractional examples that can be used to compute information

gain.

Pruning In some cases when there is noise in the data or when the number of

examples is too small to be a representative sample of the true target function, ID3

can produce trees that overfit the training examples. Overfitting is defined as follows:

Definition 22 (Overfit) A hypothesis, h, is said to overfit the training data if there

exists another hypothesis, h′, such that h has smaller error than h′ on the training

data but h′ has smaller error on the the entire test data than h.

Rule post-pruning [Mit97] is one technique to avoid overfitting the data. It involves

the following steps:

1. Infer the decision tree from the training data (allowing overfitting).

2. Convert the learned tree to a set of if-then rules

3. Prune each rule by removing any preconditions that result in improving its

estimated accuracy.
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4. Sort the pruned rules by their estimated accuracy, and consider them in se-

quence when classifying subsequent instances.

Figure 5.2: The Decision Tree of the Weather Problem

Applying C4.5 on the Weather Dataset

By applying C4.5 on the Weather dataset in Table 5.1, we can get a decision tree as

shown in Figure 5.2. The size of the tree is 8 and the number of leaves is 5. It can

be represented as a disjunction of conjunctions as follows:

(Outlook = Sunny
∧

Humidity ≤ 75)
∨

(Outlook = Overcast)
∨

(Outlook = Rain
∧

Windy = FALSE )

Using the learned decision tree to classify the example < Sunny, 85, 85, FALSE >

initially involves examining the feature at the root of the tree: Outlook. Its value is

Sunny, so the left branch is followed. Next we examine the value of Humidity and
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again the left branch is followed because its value 85 ≥ 75. This brings us to a leaf

node and the instance is classified as “no”.

5.2.2 Naive Bayes Classifier

Naive Bayes classifier is one simple yet highly practical Bayesian learning method

[Mit97, RN95]. It has been shown many times that the naive Bayes classifier rivals or

even outperforms more sophisticated classification algorithms on many datasets. It is

based on the following Bayes theorem, which provides a way to calculate the posterior

probability P (h|D) from the prior probability P (h) together with P (D) and P (D|h).

Theorem 6 (Bayes Theorem)

P (h|D) =
P (D|h)P (h)

P (D)
(5.3)

Suppose we have a set of training examples S. Each instance x in S is described

by a conjunction of attribute values < A1, A2, . . . , An >. The target function f(x)

can take on any value from some finite set V . The learning task is to determine the

target value of a new instance < a1, a2, . . . , an >.

Usually a Bayes method classifies a new instance by assigning the most probable

target values, vMAP , given the attribute values < a1, a2, . . . , an >.

vMAP = argmax P (vj | a1, a2, . . . , an), vj ∈ V (5.4)

Applying Bayes theorem, it can be rewritten as

vMAP = argmax
P (a1, a2, . . . , an |vj)P (vj)

P (a1, a2, . . . , an)

= argmax P (a1, a2, . . . , an |vj)P (vj), vj ∈ V (5.5)

Now we want to estimate the two terms in the above equation based on the training

data S. It is easy to calculate P (vj) simply by counting the frequency with which

each target value v(j) occurs in S. But estimating P (a1, a2, . . . , an |vj) is infeasible

unless we have a huge set of training examples. This is because its probability is so

small that we need a large training dataset in order to obtain reliable estimates.
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The naive classifier computes this term based on a simplifying assumption that the

attribute values ai are independent of each other given the target value vj. Therefore

the probability of observing the conjunction < a1, a2, . . . , an > is just the product of

the probabilities for the individual attributes:

P (a1, a2, . . . , an | vj) =
∏

i

P (ai | vj) (5.6)

Substituting this into Equation (2.5) we have the equation used by the naive Bayes

classifier as follows:

vNB = argmax P (vj)
∏

i

P (ai | vj), vj ∈ V (5.7)

where vNB denotes the target value output by the naive Bayes classifier.

We can see that the naive Bayes classifier greatly simplifies the learning by as-

suming that features are independent given the class. It also assumes that no hidden

attributes influence the learning. Some of the advantages of the naive Bayes classifier

include its simplicity, clear semantics, and impressive performance in practice. The

main weakness comes from its strong assumption of feature independence. Another

point that needs to mentioned is that the learning algorithm does not explicitly search

through the space of all hypotheses. The hypothesis is computed simply by counting

the frequency of various data combinations in the training examples.

Missing Values and Numeric Attributes

In the naive Bayes classifier learning, missing values cause no problem at all. If a

value is missing, it is simply not included into the frequency counting. Numeric values

are often handled [JL95, WF99] by assuming that they are generated from a Gaussian

distribution P (ai|vj) = N(µi, δi). For each numeric attribute ai and each class vj, the

mean µ and standard deviation δ are calculated as follows:

µ =
1

N

N∑

i=1

ai (5.8)

δ =

√√√√ 1

N − 1

N∑

i=1

(ai − µ)2 (5.9)
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where N is the number of examples in class vj.

Then P (ai|vj) is simply estimated by the Gaussian distribution:

P (ai|vj) =
1√
2πδ

e−
(ai−µ)2

2δ2 (5.10)

P (vj) can be calculated in the same way as in nominal attributes by frequency

counting.

The normal distribution assumption we just described is another restriction on

Naive Bayes method. However, in practice if we know what the distribution for the

numeric value is, we can use the standard estimation procedures for that distribution

rather than a Gaussian distribution. Another strategy to deal with numeric values is

simply to discretize the data before learning.

Applying Naive Bayes on the Weather Dataset

By applying the naive Bayes learning on the Weather data, we can learn a simple

Bayes classifier as shown in Figure 5.3. The root node ‘Play’ has a prior distribution

of P (yes, no) = [0.62, 0.38].

For P = yes, Outlook has a conditional distribution of P (O|P = yes) = [3/12,

5/12, 4/12]; Temperature has a Gaussian distribution of P (T |P = yes) = N(72.9697,

5.2304); Humidity has a Gaussian distribution of P (H|P = yes) = N(78.8395,

9.8023); and the distribution of Windy is P (W |P = yes) = [4/11, 7/11].

For P = no, Outlook has a conditional distribution of P (O|P = no) = [4/8, 1/8,

3/8]; Temperature has a Gaussian distribution of P (T |P = no) = N(74.8364, 7.384);

Humidity has a Gaussian distribution of P (H|P = no) = N(86.1111, 9.2424); and

the distribution of Windy is P (W |P = no) = [4/11, 7/11].

When using the naive Bayes classifier to classify a new instance < Sunny, 85, 85,

FALSE >, the Bayes rule is applied to compute the MAP on Play: first computing

P (Play| < Sunny, 85, 85, FALSE >) and then pick up the value with larger proba-

bility as the class of the instance. For this example, the returned posterior marginal

probabilities of Play is [0.1566, 0.8434], so we label the instance as “no”.
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Figure 5.3: The Naive Bayes Classifier of the Weather Problem

5.2.3 Bayesian Network Learning

Learning a Bayesian network from data [CH92, Hec96, RN95, Mit97] is to search

for a network that has a high posterior probability given the training data. The

learning algorithm takes as input the training data and some domain knowledge and

then outputs the network structure and the CPTs. In practice, the Bayesian network

learning problem has several varieties. The structure of the network can be known or

unknown, and the variables in the network can be observed or hidden [Hec96, RN95].

Our research aims to learn a network that contains dependency relationships be-

tween instance features and algorithm performance. We have partial knowledge about

the network structure, i.e., the nodes representing instances features should be the

parents of nodes that represent algorithms. We will also assume that there are no

hidden variables. This assumption is reasonable in practice because we have used

domain knowledge to select the algorithms and the corresponding problem features.

Another difficulty with learning with hidden variables and unknown structure is that,
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at present, no good general algorithms are known for this kind of problem.

The Bayesian network learning algorithm we will use is a search-and-scoring based

algorithm, namely K2, using a Bayesian score developed by [CH92]. The algorithm

searches through the spaces of all possible structures looking for a structure that best

fits the data according to some scoring criteria. Since the search space is usually

huge, the application of heuristic search is justifiable.

The Bayesian score used in K2 is stated in the following theorem.

Theorem 7 (The Bayesian Score) Suppose Z is a set of n random variables.

Each variable xi ∈ Z has ri possible value assignments: (vi1, vi2, . . . , viri
). D is a

training dataset of m cases (examples). Each case contains a value assignment of

each variable in Z. Let BS denote a Bayesian network structure containing just all

variables in Z. Each variable xi in BS has a set of parents πi. Let wij denotes the

jth unique instantiation of πi relative to D and there are qi such unique instantiation

of πi. Nijk is the number of cases in D in which variable xi has the value of vik and

πi is instantiated as wij. Let Nij =
∑ri

k=1 Nijk. Then,

P (BS, D) = P (BS)
n∏

i=1

g(i, πi) (5.11)

where

g(i, πi) =
qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk! (5.12)

This result can be used to find the most probable network structure given a

training dataset. However, the space of all possible structures is exponentially huge,

so some heuristics are often used to make the search more efficient. K2 uses a greedy

heuristic to search the best parents set for each variable. K2 assumes a uniform prior

distribution of all structures. It also assumes that there is an ordering α available on

the variables such that xi can be the parent of xj if and only if xi precedes xj in α.

The K2 algorithm is described in Figure 5.4.

The parameter values (CPT probabilities) are calculated by the following formula.

E(θijk|D, BS, ξ) =
Nijk + 1

Nij + ri

(5.13)
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Procedure K2
For i:=1 to n do

πi = φ;
Pold = g(i, πi);
OKToProceed := true
while OKToProceed and |πi| < u do

let z be the node in Pred(xi)− πi that maximizes g(i, πi);
Pnew = g(i, πi

⋃
z);

if Pnew > Pold then
Pold := Pnew ;
πi := πi

⋃
z ;

else OKToProceed := false;
end while
write(“Node:”, “parents of this nodes :”, πi );

end for
end K2

Figure 5.4: The K2 Algorithm

The K2 algorithm takes as input a set of n nodes, an ordering α on the nodes, an

upper bound u on the number of parents a node may have, and a database D of m

training examples. For each variable, it first assumes the node has no parents, and

then adds to its parent set new node incrementally from among the predecessors in

the ordering such that the added parent node increases the probability of the resulting

structure by the largest amount (in this sense it uses a greedy search strategy). It

stops adding parents when no improvement can be made or when it has got u parents.

It then outputs the parents of the node.

We first discretize the weather data and then run K2 on it. The learned Bayesian

network is shown in Figure 5.5. The order used is <Outlook, Temperature, Humidity,

Windy, Play>. The classification process of Bayesian networks is the same as the

naive Bayes classifier’s, i.e., computing the posterior marginal probabilities of the

class node and then taking the value with maximum probability.
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Figure 5.5: The Bayesian Network of the Weather Problem Learned by K2

Bayesian Networks and the Naive Bayes Classifier

Recall that the naive Bayesian classifier makes use of the independency assumption

that all the attributes a1, a2, . . . , an are conditionally independent given the target

value v. This assumption dramatically reduces the complexity of learning the target

function. However, in many cases the assumption is overly restrictive. In contrast

to the naive Bayesian classifier, Bayesian networks is less constraining by allowing

conditional independence assumptions that apply to subsets of the variables rather

than all variables. Thus it provides an intermediate approach that is less restrictive

comparing to the naive Bayesian classifier, yet more tractable than dealing with the

exponentially-sized joint probability space directly.
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5.3 Evaluation of the Learning Algorithms

Evaluating the learning algorithm is an important part of machine learning [WF99].

For the evaluation of a single classifier, the most common criterion is classification

accuracy. Stratified k-fold cross-validation is the standard method in practice to com-

pute the classification accuracy. Another common way is using a confusion matrix

and the Kappa statistic to describe the disagreement between the actual classes and

the predicted classes by the learned classifier. If the classifier can predict classifica-

tions with probability weights, the Root Mean Square Error (RMSE) can be applied.

For comparing two classifiers on the same test data, a paired t-test is often used to

compare the average error rate over several cross-validations.

5.3.1 Classification Accuracy and Error Rate

Classification accuracy is simply defined as the percentage of test examples correctly

classified by the learning algorithm. Error rate is one minus the classification accu-

racy.

Strictly speaking, all we can measure is just the sample error; it is impossible to

get the exact true error. The true error is the error rate over the entire unknown

distribution D of examples. The sample error is the error rate over the sample of

data that is available. Fortunately, the sample error has been shown to be a good

estimate to the true error [Mit97]. More specifically, suppose we want to estimate

the true error of a hypothesis h based on the sample error, errors(h), measured over

a sample S of n examples. Suppose again we are given the following conditions:

• the n samples drawn independently from each other, and independent of h,

according to the probability distribution D

• n ≥ 30

• h commits r errors over these n examples, i.e., errors(h) = r/n.
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Under these conditions, statistic theory tells us that the following assertions are

true:

• Given no other information, the most probable value of the true error, errorD(h),

is the sample error errors(h).

• With approximately 95% probability, the true error lies in the interval

errors(h)± 1.96
√

errors(h)(1−errors(h))
n

When enough data is available, we can just use the training set to learn the model

and use a different test set to estimate the classification accuracy, supposing they

both are representative and are drawn from the same distribution. But, data is often

scarce and expensive in practice. When the amount of data is limited, the most

common performance evaluation method is repeated cross-validation. The idea is to

partition the data into training and test sets in different ways. The learning algorithm

is trained and tested for each partition and the classification accuracy averaged. This

often provides a more reliable estimate of the true classification accuracy.

5.3.2 Stratified k-fold Cross-validation

In practice, a standard way of evaluating the classification accuracy is called strat-

ified k-fold cross-validation [WF99] in which the training data is randomly divided

into k mutually exclusive subsets of approximately equal size. In each subset, the

class is represented in approximately the same proportions as in the whole data set.

The learning algorithm is executed and the learned model tested k times. For each

iteration, one subset is held out as test set and the remaining k − 1 subsets are used

for training. Finally, the k estimates are averaged to yield the overall classification

accuracy. Often times, a single stratified k-fold cross-validation might not produce

a reliable estimate, so we typically run cross-validation many times and average the

results. In this research, we will use ten ten-fold cross-validations, i.e., executing the

learning algorithm one hundred times on data sets that are all nine-tenth the size of

the original data.
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5.3.3 Confusion Matrix and Kappa Statistic

One possible method of evaluating classification experiments is to count the number

of correctly and wrongly classified data. This gives a rough impression of how good

the classification is. In order to get a better interpretation of the result, it is also

useful to know which classes of data were most often misplaced.

The confusion matrix, a matrix containing information about the actual and pre-

dicted classes [KP98], is a convenient tool for counting. In the confusion matrix, all

of the columns represent the predicted classes, and thus a piece of data belongs to

the column if it is classified as belonging to this class. The rows represent the actual

classes, and a piece of data is thus represented in a particular row if it belongs to the

corresponding class. A perfect classification results in a matrix with 0’s everywhere

but on the diagonal. A cell which is not on the diagonal but has a high count signifies

that the class of the row is somewhat confused with the class of the column by the

classification system.

After the confusion matrix is fixed, we can calculate the Kappa statistic (K), or

Kappa coefficient, to quantify the agreement between the actual and the predicted

classifications [Coh60, Kra82]. The Kappa statistic measures the proportion of agree-

ment after chance agreements (samples that are accidentally classified correctly) have

been removed from considerations. The Kappa statistic is defined as follows:

K =
P (A)− P (E)

1− P (E)
(5.14)

where P (A) is the accuracy of observed agreement, P (E) is the estimate of chance

agreement. They are computed by the following equations:

P (A) =

∑n
i=1 mii

T
(5.15)

and

P (E) =

∑n
i=1 mi+m+i

T 2
(5.16)

where T is the total sum of all numbers in the matrix, mii is the numbers on the

diagonal, mi+ is the marginal total of row i, and m+i is the marginal total of column

i.
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K increases to one as agreement by chance decreases and become negative as less

than chance agreement occurs. k = 0 when the agreement equals chance agreement.

5.3.4 Evaluating Predicted Probabilities: RMSE

Some classifiers not only predict the 0 or 1 classification, but also provide a probability

weight to each class label. Therefore, this type of classifier calculates a probability

vector p = [p1, . . . , pk] for the classes,
∑k

i=1 pi = 1. The true classification can be

represented as a vector of 0 and 1: a = [a1, . . . , ak], ak = 0 or 1. In this case the

RMSE is frequently used to measure the difference between the true classification

and the estimated class probabilities over several cross-validations.

RMSE =

√∑k
i=1(pi − ai)2

k
(5.17)

5.3.5 Comparing Two Classifiers: Paired T-test

Often times, we want to compare two learning algorithms, say C4.5 and naive Bayes,

on the same problem to see which is better. We can apply both algorithm on the same

training data, then use the same cross-validation splits for each algorithm. Finally,

we can get a pair of results on the same test data. A statistic method called the paired

t-test [WF99] can be used to compare the average error rate of these two results.

Given two paired sets Xi and Yi of n result values, the paired t-test determines

if they differ from each other in a significant way. Let X̄ =
∑n

i=1 Xi/n and Ȳ =
∑n

i=1 Yi/n, let X̂i = (Xi − X̄) and Ŷi = (Yi − Ȳ ). t is defined by:

t = (X̄ − Ȳ )

√√√√ n(n− 1)
∑n

i=1(X̂i − Ŷi)2
(5.18)

This statistic has n − 1 degrees of freedom. A table of Student’s t-distribution

confidence intervals can be used to determine the significance level at which two

distributions differ.

Table 5.2 is the confidence limits table for Student’s distribution with 9 degrees

of freedom 1. In practice, 5% or 1% is often used as the confidence level. If the value

1In our evaluation scheme the number of experiments is 10.

105



Table 5.2: Confidence Limits for the Student’s Distribution with 9 Degrees of Freedom

Pr(X ≥ z) z
0.1% 4.30
0.5% 3.25
1% 2.82
5% 1.83
10% 1.38
20% 0.88

of t at the confidence level is greater than z or less than −z in Table 5.2, then we

conclude that there is a significant difference between the two learning algorithms on

the dataset. It is easy to see which is better by comparing their error rates.

5.3.6 Evaluation of Learning on the Weather Problem

We have learned a decision tree from the Weather data using C4.5 as shown in Fig-

ure 5.2. Now we list the evaluation result in Table 5.3.

Table 5.3: Evaluation Result of C4.5 on the Weather Data

10 stratified 10-fold cross-validation evaluation summary
Total #Instances 14

Correctly Classified Instances 9
Classification Accuracy 64.2857

Error Rate 35.7143
Kappa statistic 0.186

Root mean squared error 0.4818

Confusion Matrix

a b ← classified as(
7 2
3 2

)
a
b
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5.4 Data Preprocessing

We have introduced three models and their learning algorithms: decision tree learning,

the naive Bayes classifier, and Bayesian network learning. When applying machine

learning algorithms to practical data mining problems, there are some other impor-

tant processes that can improve the performance of learning. In the following, we

introduce two important data preprocessing methods: feature (attribute) selection

and discretization.

5.4.1 Feature Selection

In many practical situations, there are often too many features or attributes (infinitely

many in theory) for learning algorithms to handle. Most of them are irrelevant or

redundant. In practice, the data must be preprocessed to select the most relevant

attributes to use in learning. This is called feature selection [Hal99]. The best way to

select relevant attributes is manually, based on a good understanding of the problem

and the meaning of the attributes. This is a way to combine a domain expert’s knowl-

edge into learning. However, automatic methods can also be very useful sometimes,

especially when human expert fails to make the precise choice between two closely

related attributes. Feature selection also makes the model more compact and speeds

up the learning process, although this maybe outweighed by the computation used

for feature selection.

There are two important feature selection approaches: the filter method and the

wrapper method [KJ97]. The former evaluates the worth of feature subsets based on

general characteristics of the data. The latter wraps the machine learning algorithm

that will ultimately be used into the feature selection process and uses it to evaluate

the feature subsets.

Both methods involve searching the space of all combinations of features for the

subset that is most likely to predict the class best. Within each categories, algorithms

can be further differentiated by what evaluation functions are used and how the space

of feature subsets is explored. The search space is exponential in the number of
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features. Therefore, heuristic searches are often used. For example, greedy search

and genetic algorithm are two common search strategies for feature selection.

Both filters and wrappers have their advantages and disadvantages. Wrappers

often give better results in terms of the final predictive accuracy of the learning algo-

rithm because the feature selection is optimized for the particular learning algorithm.

But wrappers are very expensive to run and can be intractable for datasets with

many features. Also, wrappers are less general because they are tightly related with

a learning algorithm. Wrappers must be rerun when switching to a new learning

algorithm. Filters are much faster than wrappers and are independent of the learning

algorithms.

In this thesis, we will use a GA wrapper [WF99, KJ97, Hsu02] to perform feature

selection before learning. We will also compare the model learned with and without

feature selection to see how feature selection might improve the overall learning.

Again, we have tested it on the Weather dataset using a GA wrapper with C4.5

evaluator. The result shows that feature selection is able to identify Temperature as

an irrelevant attribute and reduces the number of features by one.

5.4.2 Discretization of Numeric Attributes

Discretization is a procedure that takes a data set and converts all continuous at-

tributes to nominal. It is a necessary preprocessing step for learning algorithms that

require nominal attributes. Recent research also shows that some common machine

learning algorithms benefit from treating all features in a uniform fashion. In this

case discretization is also useful.

Equal-width and Equal-frequency Intervals

The simplest and most straightforward discretization method is using predetermined

equal-width intervals. It involves sorting the values of a continuous feature and divid-

ing the range of these values into k equally sized bins. This is often done with the

help of domain knowledge at the time when data is collected. But it runs in the risk
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Table 5.4: The Discretized Weather Data

Instance# Features Class
Outlook Temperature Humidity Windy Play

1 sunny (82.9-inf) (83.6-86.7] FALSE no
2 sunny (78.7-80.8] (89.8-92.9] TRUE no
3 overcast (82.9-inf) (83.6-86.7] FALSE yes
4 rainy (68.2-70.3] (92.9-inf) FALSE yes
5 rainy (66.1-68.2] (77.4-80.5] FALSE yes
6 rainy (-inf-66.1] (68.1-71.2] TRUE no
7 overcast (-inf-66.1] (-inf-68.1] TRUE yes
8 sunny (70.3-72.4] (92.9-inf) FALSE no
9 sunny (68.2-70.3] (68.1-71.2] FALSE yes
10 rainy (74.5-76.6] (77.4-80.5] FALSE yes
11 sunny (74.5-76.6] (68.1-71.2] TRUE yes
12 overcast (70.3-72.4] (89.8-92.9] TRUE yes
13 overcast (80.8-82.9] (74.3-77.4] FALSE yes
14 rainy (70.3-72.4] (89.8-92.9] TRUE no

of producing bad choices of boundaries if the values are not very evenly distributed.

An improvement to equal-width is using equal-frequency intervals. It sorts the

values of a feature, divides the ranges into a predetermined number of k bins, and

assigns 1
k

of the values to each bin.

Both equal-width and equal-frequency binning are unsupervised discretization

methods because they do not make use of the class in determining interval bound-

aries. Supervised methods have advantages of taking classes into account during

discretization process and thus can produce better intervals.

Entropy-based Discretization Using MDL Stopping Rule

In practice, one of the best general techniques for supervised discretization is the

entropy-based method with the MDL stopping rules developed by Fayyad and Irani

[FI93]. This method uses the class information entropy of candidate partitions to se-

lect bin boundaries. The idea is similar to the process of splitting a numeric attribute
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during the learning of a decision tree.

Suppose we are given a set of instances S, a continuous feature A to be discretized,

and a partition boundary T . T partitions S into two subsets S1 and S2. Let there be

k classes C1, . . . , Ck and let P (Ci, S) be the proportion of examples in S that have

class Ci. The class entropy of S is defined as:

E(S) = −
k∑

i=1

P (Ci, S) log(P (Ci, S)). (5.19)

The class information entropy of the partition introduced by T is given by:

E(A, T ; S) =
S1

S
E(S1) +

S2

S
E(S2). (5.20)

For a given feature A, the boundary Tmin that minimizes the entropy over all

possible partitions is selected as a binary discretization boundary. This procedure is

applied recursively to both of the subsets introduced by Tmin until it is time to stop,

thus creating multiple intervals on feature A.

The Minimal Description Length Principle is used to determine the stopping cri-

terion. The recursive discretization process stops if and only if the information gain

is smaller than a threshold:

Gain(A, T ; S) <
log2(N − 1)

N
+

log2(3
k − 2)− kE(S) + k1E(S1 + k2E(S2)

N
(5.21)

where N is the number of examples in S, ki is the number of classes in Si, and

Gain(A, T ; S) = E(S)− E(A, T ; S) (5.22)

Applying this algorithm to the Weather data, we can get a discretized data set as

shown in Table 5.4. Note that both Temperature and Humidity have been discretized

to 10 intervals.

5.5 Meta-learning: Combining Multiple Models

Data preprocessing methods engineer the input data to improve the overall perfor-

mance of learning. In contrast there are methods that engineer the output from ma-

chine learning algorithms. In this section we will introduce three such meta-learning
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schemes − bagging, boosting, and stacking − that combine multiple learned models

to form a stronger model.

5.5.1 Bagging

Bagging [Bre96, WF99] stands for “bootstrap aggregating”. The basic idea of bagging

is to generate multiple training datasets from the original dataset using bootstrap

sampling and induce a model from each dataset. When classifying a new instance,

all learned models vote on the final classification. The class receives the most votes is

returned as the predicted class. In bagging, multiple models are learned in a parallel

manner. The algorithm is described in Figure 5.6.

Bagging(n training examples D, int t, a test instance)
Learning
for i=1 to t

Sample n instances Di with replacement from D;
Apply the learning algorithm to Di;
Save the learned model Mi;

Classification
for i=1 to t

Predict class of instance using Mi;
return class that has been predicted by most models.

Figure 5.6: Algorithm for Bagging

5.5.2 Boosting

Boosting [FS96, WF99] also adopts the idea of voting to combine multiple models,

but it learns multiple models in an iteratively sequential manner. The learned models

in boosting often complement each other; i.e., every one of them is good at predicting

class for a particular subset of examples. Another difference is that boosting uses a

weighted vote that assigns more weight to the more successful models. In boosting,
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each instance also has a weight. Initially, all training instances are assigned equal

weights. The learning algorithm is then applied and a classifier is generated. Each

instance is reweighed according to the output of the learned classifier. The weight of

correctly classified instances is decreased, and that of misclassified ones is increased.

In the next iteration, another classifier is built from the reweighed data. Consequently,

it focuses more on classifying the misclassified instances correctly. The iteration keeps

on going until the stopping criterion is satisfied. Finally, this process will generate a

series of classifiers complementing each other. The weights used to update instances

after each iteration are determined by the error rate e of the learned classifier:

Weightnew =
e

1− e
Weightold (5.23)

The iteration stops whenever e ≥ 0.5 or e = 0.

In forming the predictions, outputs from all classifiers are combined using a

weighted vote. The weight of a classifier is determined by how well it performs on the

training dataset from which it was built. It is calculated by the following formula.

Weightvote = − log
e

1− e
(5.24)

The weights of all classifiers that vote for a particular class are summed and the class

with the greatest total weight is returned as the predicted class. The algorithm is

described in Figure 5.7.

5.5.3 Stacking

In both bagging and boosting, the multiple models being combined are all the same

type. Stacking [Wol92, WF99] is able to combine models built by different learning

algorithms. For example, suppose we have learned a decision tree, a naive Bayes

classifier, and a Bayesian network from the same data. We can use stacking to

combine them all together to form a new classifier. Stacking does so by introducing

a meta-learner to learn which classifier is the most reliable one and to decide how

best to combine the predictions of all classifiers. Therefore there are two levels of
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Boosting(n training examples D, a test instance)
Learning
Assign equal weight to each training example;
STOP = false;
while (!STOP)

Apply the learning algorithm to Di, save the learned
model Mi, compute and save the error rate e;
if e ≥ 0.5 or e = 0

STOP = true;
for each training example in Di

if the instance is correctly classified
Multiply the weight by e

1−e
;

Normalize all weights;
end while

Classification
Assign weight of zero to all classes;
for each learned model Mi

add − log e
1−e

to the predicted class;

return class with the greatest weight.

Figure 5.7: Algorithm for Boosting

learning in stacking. The level-0 learners, or base learners, are trained as they would

be if they were stand-alone using the original training data. The level-1 learner, or

the meta-learner, needs a different level-1 training data that reflects the performance

of level-0 learners. This is done by letting each level-0 learned model classify an

instance, and attaching to all predictions the actual class value. Usually, a portion

of the original training data is reserved for generating level-1 training data in order

to reduce the biases. Since most of the work is already done at level-0, the level-1

learner is usually a simple classifier, such as a linear model. The algorithm outline

for stacking is described in Figure 5.8.
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Stacking(n training examples D, a test instance)
Learning
Hold out a subset of training example D1 for level-1 learning;
Apply k learning algorithms to the remaining data;
Save the learned k models Mi;
Use these k models to classify D1 and generate level-1 training data;
Apply a simple linear regression to produce the level-1 classifier

Classification
Apply Mi to classify the test instance;
Use the result to form a level-1 instance;
Apply the level-1 model to decide the best class;

return the best class.

Figure 5.8: Algorithm for Stacking

5.6 Overview of the Learning Process for Algo-

rithm Selection

Working flow of our machine learning-based approach for algorithm selection con-

sists of all procedures we have discussed so far. More specifically, we have instance

generation, data collection, data preprocessing (discretization and feature selection),

learning, multiple models combination (bagging, boosting and stacking), and model

evaluations. Figure 5.9 gives an overview of the whole process. In the following two

chapters, we will apply this process to algorithm selection for sorting and the MPE

problem.
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Figure 5.9: Overview of the Machine Learning-based Approach for Algorithm Selec-
tion
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Chapter 6

Algorithm Selection for Sorting

In this chapter we apply the machine learning-based approach to the selection of

a sorting algorithm. More specifically, we examine the relationships between three

important presortedness measures − INV, RUN, REM − and the performance of five

well-known sorting algorithms: Insertion Sort, Shellsort, Heapsort, Mergesort, and

Quicksort.

6.1 Sorting

Sorting is the process of rearranging a given sequence of comparable items into as-

cending or descending order [Knu81]. It is one of the most fundamental problems

in computing and has been intensively studied for many years. Moreover, it is also

a very practical problem. It is estimated that over 25 percent of the world’s CPU

running time is being spent on sorting [Knu81].

To simplify matters, we will assume without loss of generality that the orderable

items are unique integers and the entire sort can be done in the main memory. This

type of sorting is called internal sorting. We will not consider external sorting in

which sorts can not be performed in main memory and must be done on disk or tape

[Knu81, Wei99]. We will also assume that the input is a permutation of numbers

from 1 to n. We assume this abstraction to simplify analysis and implementations,

but the algorithms cannot assume this and exploit that information to speed up the

sort. We will use the ascending order as the correct one.

116



We will use the comparison-swap model [Raw92] described as follows. The problem

is that

• we have an array of integers in arbitrary order.

• we want an ordered array of the integers.

Our environment is that

• the integers are all different (for simplification).

• we can derive the order information only by comparing integers.

• we can preserve the order information only by swapping integers.

It is well-known that sorting in this comparison-swap model has a lower bound

complexity of O(n log n) [Raw92], where n is the number of items to be ordered.

6.2 Sorting Algorithms

It would be impossible to investigate and compare all of the sorting algorithms and

their variations. In our experiments we have chosen the following 5 sorting algorithms;

• Insertion Sort

• Shellsort

• Heapsort

• Mergesort

• Quicksort

These have been chosen because they are representatives of the various categories

of sorting algorithms. Next we briefly introduce each algorithm. Interested readers

should consult [Knu81, Raw92] for details.

117



6.2.1 Insertion Sort

Insertion sort is one of the simplest sorting algorithms. It sorts the list by incremen-

tally inserting unsorted items into a sorted sublist. Insertion sort consists of n − 1

passes. For pass p = 1 through n − 1, it ensures that the elements in positions 0

through p − 1 are already in sorted order. Insertion sort makes use of this fact to

insert the unsorted element into its correct place relative to the sorted sublist.

Insertion sort is O(n2). The worst case occurs when the input is in reverse order.

The average-case complexity is also O(n2) for insertion sort. However, one important

fact about insertion sort is that it is linear on nearly-sorted input. The presortedness

of an input list can be quantified by various measures. We will examine three of them

in later sections.

6.2.2 Shellsort

Insertion sort is slow because it is inefficient at moving data. To move an element takes

time proportional to that distance because insertion sort exchanges only adjacent

elements. Shellsort [Boo63], named after its inventor, D. L. Shell, is a simple extension

of insertion sort. It gains speed by comparing and exchanging elements that are

distant. Shellsort uses an increment sequence h1, h2, . . . , ht. After a phase, using

some increment hk, for every i, we have a[i] ≤ a[i + hk] and all elements spaced hk

apart are sorted. When the subsequences are all sorted, the resulting array is nearly

sorted and a final pass of insertion sort is called to completely sort it. Because hk

decreases as the algorithm runs, Shellsort is sometimes referred to as diminishing

increment sort.

Any increment sequences will work as long as h1 = 1, but some are better than

others. Shell suggested a natural choice for increment sequences: ht = bn/2c and

hk = bhk+1c. Although the worst-case running time of Shellsort using this increment

sequences is O(n2), its performance is quite acceptable in practice even for large

permutations. Another advantage of Shellsort is that it requires only a small amount

of coding to get it working, while other sorting algorithms are significantly more
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complicated, if a little more efficient.

6.2.3 Heapsort

Heapsort [Wil64] first uses O(n) time to build a binary heap of n elements. It then

performs n deleteMin operations so that the elements leave the heap in sorted order.

By recording and copying these elements back to the array, we finally have a sorted

array. Since each deleteMin operation takes O(log n) time, the total running time is

O(n log n). Because Heapsort finds the m smallest elements in O(n + m log n) time,

it is preferred in cases where incremental sorting is needed.

6.2.4 Mergesort

Mergesort recursively sorts the array using a divide-and-conquer strategy. Merge-

sort recursively breaks large sequences into smaller subsequences and then sorts and

merges these subsequences into one sorted list. The time to merge two sorted sub-

sequences is linear. The worst-case running time of mergesort is O(n log n), and the

number of comparisons used is nearly optimal. The drawback is that it uses extra

memory.

6.2.5 Quicksort

Quicksort [Hoa61] is the fastest known sorting algorithm in practice. Like mergesort,

quicksort is also a divide-and-conquer recursive algorithm. It uses the idea of “parti-

tioning” in its recursive steps. The divide phase partitions the array into two disjoint

parts: the “small” elements on the left and the “large” ones on the right. The conquer

phase sorts each part separately. Because of the work of the divide phase, it does

not need a merge phase to combine partial solutions. Quicksort has an average-case

running time of O(n log n), although its worst-case is O(n2). Moreover, the worst-case

behavior is never observed in practice and can be made exponentially unlikely with a

little effort [Wei99]. In quicksort the way of picking the “pivot” to partition the list is

crucial. We use Median-of-Three partitioning. It uses as its pivot the median of the
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left, right, and center elements. It has been proven efficient in practice and actually

reduces the running time by 5 percent [Wei99].

6.3 Instance Characteristics: Measures of Presort-

edness

Nearly sorted sequences are common in practice [Knu81]. Such instances are easy

in the sense that a small amount of work is needed to sort them. When the sorting

algorithms take advantage of the existing order in the input, the time taken to sort is

a function of the size of the input sequence and the disorder in the sequence. These

types of algorithms are called adaptive [Man85]. If the disorder of the sequence is

small, the algorithm can do better than O(n log n). For example, insertion sort is

linear for nearly sorted sequences. The existing order in a sequence, or presortedness,

can be quantified by more than one measure. [ECW92] lists 11 different measures

of presortedness. We will study 3 of them: the number of inversions, the number of

runs, and the longest ascending subsequence. These were chosen because they are the

most natural and representative measures of presortedness.

6.3.1 Inversions (INV)

Let A = < a1, a2, . . . , an > be a permutation of set {1, 2, . . . , n}. An inversion is a

pair of elements in the wrong order.

Definition 23 (Inversions)

INV (A) = | { (i, j) | 1 ≤ i < j ≤ n and ai > aj } | (6.1)

INV(A) is an important presortedness measure and has been intensively studied in

[Knu81]. For an already sorted sequence, we have INV (A) = 0, and for a sequence in

reverse order, INV (A) = n(n−1)
2

. INV(A) indicates how many exchanges of adjacent

elements are needed to sort A. In this sense it is an accurate performance indicator

for algorithms using only adjacent element exchanges such as bubble sort. However,
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it generally has two drawbacks. First, it takes O(n2) time to compute exact INV.

Second, inputs of the following type

< k + 1, k + 2, k + 3, . . . , 2k, 1, 2, 3, . . . , k >

have a quadratic number of inversions, but intuitively they are almost in order. They

can be sorted fast using merging.

Inversion Table

The inversion table < b1, b2, . . . , bn > of permutation < a1, a2, . . . , an > is obtained

by letting bj be the number of elements to the left of j that are greater than j. For

example, the permutation

A =< 4 3 6 2 1 5 > (6.2)

has the inversion table

B(A) =< 4 3 1 0 1 0 >, (6.3)

because 4, 3, 6, 2 are to the left of 1; 4, 3, 6 are to the left of 2; and so on. There are

a total of 9 inversions in A. By definition, we always have the following relations

0 ≤ b1 ≤ n− 1, 0 ≤ b2 ≤ n− 2, . . . , 0 ≤ bn−1 ≤ 1, bn = 0. (6.4)

Bijection about INV

One important fact about inversions is that the inversion table uniquely determines

the corresponding permutation. It is easy to compute A given B(A) [Knu81]. This

correspondence is important because we can translate a problem stated in terms of

permutations into an equivalent problem stated in terms of inversion tables, and

the latter may be easier to solve. We will use this bijection to design a random

generation algorithm that can generate permutations with given size and a specified

INV uniformly at random.

6.3.2 Runs (RUN)

RUN is the number of ascending substrings, or the “runs up”, of a permutation.
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Definition 24 (Runs)

RUN(A) = | { i | 1 ≤ i < n and ai > ai+1 } | (6.5)

For example, the permutation

A = < |4| 3 6| 2| 1 5| > (6.6)

has 4 runs. RUN is an important measure because it represents the number of sorted

subsequences of the input. For an already sorted sequence, we have RUN(A) =

1, and for a sequence in reverse order, RUN(A) = n. RUN reflects the intuition

of presortedness that a small number of ascending runs indicates a high degree of

presortedness. It is also easy to compute, i.e., in O(n) time. The drawback with this

measure is that it does not capture local disorders well. For example,

< 2, 1, 4, 3, . . . , n, n− 1 >

produces a lot of runs (n/2), even though it is almost sorted and can be quickly sorted

using exchanges of adjacent elements.

Again we want to randomly generate permutations with a specified number of

runs for our algorithmic experiments. We need to translate the random generation

problem into an simpler, equivalent problem, as we did for INV. In the following

we introduce some new concepts about permutations that are useful to design the

random generation algorithm.

Representations of Permutations

Any permutation can be represented in at least three notations: one-line notation,

cycle-notation, and two-line notation [SW86]. One-line notation is the most common

representation. For example, A = < 3, 5, 1, 4, 2 >. Cycle-notation is based on the

fact that any permutation can be written as a product of disjoint cycles. For A = <

3, 5, 1, 4, 2 >, we have A = (13)(25)(4). Any cycle of length one in A corresponds to

a fixed point of A. In this example A(4) = 4 is a fixed point. Two-line notation lists

A(i) under i like this:
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(
1 2 3 4 5
3 5 1 4 2

)

Bijection about RUN

The cycle-notation, i.e., the decomposition of A into disjoint cycles, gives us another

bijection that is useful for help in designing random generation algorithms that can

generate permutations with given size and RUN uniformly at random. We put the

smallest number of each cycle at the end of that cycle, and put the cycle in order of

the last entries. This defines the canonical cycle decomposition of A. For example, the

canonical cycle decomposition of A = < 463281795 > is (4261)(3)(895)(7). We have

another permutation by removing the parentheses: φ(A) =< 426138957 >, in on-line

notation. The mapping φ(A) is a bijection because we can recover A from φ(A) as

follows: the first cycle of A is the initial segment of φ(A) ending at 1. The next cycle

of A ends in the smallest number not appearing in the first. All remaining cycles are

calculated in the same manner. For n = 4, the bijection is given in Table 6.1.

The first entries of A and φ(A) are always the same. This is because the last entry

of the first cycle of A is 1, so φ maps 1 to φ(A)1. Thus A1 = φ(A)1. We also notice

that the falls1, or descents, of elements in φ(A) must lie inside the cycles of A. In

the example φ(A) = < 4|26|1389|57 >, φ(A) has 3 falls: 4 → 2, 6 → 1, and 9 → 5.

So, for any fall φ(A)iφ(A)i+1 in φ(A), the following is true in A: Aj = φ(A)i, Am =

φ(A)i+1, and j > m. Clearly, the reverse is also true: any such j and m in A also

gives a fall in φ(A). If a permutation has k falls, it also has k + 1 runs. Therefore we

have the following important theorem.

Theorem 8 The number of permutations φ(A) of n with k + 1 runs is equal to the

number of permutations A whose two-line notation has m below j with j > m in

exactly k positions.

Let us take one entry in Table 6.1 as an example: φ(A)4 = < 4321 >. The number

1In general, aiai+1 is a fall if ai > ai+1
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Table 6.1: Bijection φ(A) for All Permutations of n = 4

A φ(A)
1234 1234
1243 1243
1423 1432
4123 4321
4132 4213
1432 1423
1342 1342
1324 1324
3124 3214
3142 3421
3412 3142
4312 4231
4321 4132
3421 3241
3241 3412
3214 3124
2314 2314
2341 2341
2431 2413
4231 4123
4213 4312
2413 2431
2143 2143
2134 2134

124



of runs in φ(A)4 is 4. We expect that there are 3 positions in two-line notation of

A4 = < 4123 > where the element in the upper line is larger than the corresponding

element in the below line:



1 2 3 4
∧ ∨ ∨ ∨
4 1 2 3




Theorem 8 and the mapping φ(A) in

Table 6.1 provides an important bijection according to which we can translate the

random generation problem with given RUN(A) = k into the random generation of

permutations φ(A) whose two-line notation has k − 1 positions satisfying the above-

mentioned j > m property. Again, the latter problem is easier to solve than the

original problem.

6.3.3 Longest Ascending Subsequence (LAS) and REM

LAS of a permutation A is the length of the longest ascending subsequence of A.

Definition 25 (LAS)

LAS(A) = max{t| ∃i1, . . . , it s.t. 1 ≤ i1 ≤ . . . ≤ it ≤ n andAi1 ≤ . . . ≤ Ait}. (6.7)

For example, one longest ascending subsequence of A = < 463281795 > is <

4689 >, so LAS(A) = 4. Clearly, 1 ≤ LAS(A) ≤ n. If A is sorted, LAS(A) = n.

LAS(A) attains its minimum value 1 for a list in reverse order. A related measure

is REM(A) = n− LAS(A), which indicates how many numbers have to be removed

from A to make a sorted list. A large LAS (small REM) guarantees little local

disorders that INV and RUN cannot do. LAS(A) and REM(A) can be computed

in O(n log n) [Fre75].

To solve the random generation problem for LAS or REM , we first translate it

into an easier problem using the following combinatorial properties of permutations.
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Integer Partitions and Young Diagram

An integer partition of n is a k-tuple of positive numbers λ = (λ1, . . . , λk) if (λ1 +

. . . + λk) = n and λ1 ≥ . . . ≥ λk ≥ 1. k is the number of parts of λ. For example,

a partition of 6 into 3 parts can be either (3, 2, 1) or (2, 2, 2). We can also describe

them by giving the number of times that a part i occurs, called the multiplicity of i,

like this: 312111 or 23.

It is useful to picture a partition as an array of squares, or cells, left justified, in

decreasing order. For example, λ = (3, 2, 1) is given by

.

Such diagrams are called Young diagrams.

Young Tableaux

Let λ be a partition of n. A Young tableaux of shape λ is the Young diagram of λ

with each cell filled with a positive number such that the entries of each row are in

increasing order from left to right, and the entries of each column are increasing from

top to bottom. For example,
1 3 5
2 4
5

is a Young tableaux of shape (3, 2, 1). For simplicity, we will just call it a tableaux.

Bijection about LAS: the Schensted Correspondence

Schensted correspondence is a bijection between multiset permutations and pairs of

tableaux of the same shape. We will consider a special case of it on permutations

instead of multiset permutations. Then we have the following theorem: [Knu81,

SW86].

Theorem 9 There is a one-to-one correspondence between the set of all permuta-

tions of {1, 2, . . . , n} and the set of ordered pairs (P, Q) of tableaux formed from
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{1, 2, . . . , n}, where P and Q have the same shape.

For example, for n = 3 the bijection is as follows.

1 2 3 ⇐⇒

1
2
3

1
2
3 1 3 2 ⇐⇒

1 3
2

1 3
2

2 1 3 ⇐⇒
1 2
3

1 2
3 2 3 1 ⇐⇒

1 2
3

1 3
2

3 1 2 ⇐⇒
1 3
2

1 2
3 2 3 1 ⇐⇒ 1 2 3 1 2 3

Because the Schensted correspondence is a bijection, we can build (P, Q) from a

permutation A and recover A from (P, Q). These algorithms are described in detail

in [Knu81, SW86].

One remarkable property of the Schensted correspondence is that the length of

the longest ascending subsequence of A is hidden in the shape of the corresponding

tableaux P or Q. We have the following theorem.

Theorem 10 Let A be a permutation of {1, 2, . . . , n} and (P, Q) be the pair of

tableaux determined by the Schensted correspondence. The number of rows of P (or

Q) is the length of the longest ascending subsequence of A.

Therefore, by using the Schensted correspondence we can translate the problem

of generating random permutations with given size and a specified LAS(A) = k into

the problem of generating pairs of tableaux (P,Q) of k rows, and then recover the

permutation from (P,Q).
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6.4 Random Generation of Permutations with Given

Degree of Presortedness

The random generation of test instances with some specified characteristics is im-

portant for empirical analysis of algorithms. In its abstract form, the problem is

to generate elements of a finite set S of combinatorial structures at random from a

uniform distribution. That is, all elements should be selected with the same chance.

The exact random generation problem appears to be intractable for many important

structures, so interest has focused on finding efficient randomized algorithms that ap-

proximate it. The brute-force algorithm of exhaustively listing all possible elements

in S and choosing one at random is often not viable because S can be extremely

large. In this section we apply a Markov approach [Sin93] to generate permutations

with given degree of presortedness uniformly at random.

At the heart of this Markov approach is a simple algorithmic paradigm that simu-

lates a Markov chain whose states are the set S of combinatorial structures and which

converges to a uniform distribution over S.

6.4.1 The Markov Chain Approach to Random Generation
Problems

Let I be a countable set 2. Each i ∈ I is called a state and I is called the state-space.

We call that λ = (λi : i ∈ I) is a distribution on I if 0 ≤ λi ≤ ∞ and
∑

i∈I λi = 1. Let

X be a random variable and suppose we set λi = P (X = i). λ defines the distribution

of X; i.e., X is a random variable that takes value i with probability λi. We say that

a matrix P = (pij : i, j ∈ I) is stochastic if every row pij : j ∈ I is a distribution. P

is called doubly stochastic if every column pij : i ∈ I is also a distribution.

Definition 26 (Markov Chain) We say that (Xn)n≥0 is a Markov chain with ini-

tial distribution λ and transition matrix P if X0 has distribution λ and the distribu-

tion of Xt, defining by the transition matrix (pij : j ∈ I), given all previous values

2For simplicity we will only consider finite sets .
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X0, . . . , Xt−1 only depends on Xt−1, i.e.,

P (Xt|X0, . . . , Xt−1) = P (Xt|Xt−1) = pit−1it (6.8)

A natural question for a Markov chain is to determine the probability of X in a

given state after some finite steps. For any positive integer s, the s-step transition

matrix is simply the power P s = p
(s)
ij = P (Xt+s = j|Xt = i), independent of t. A

Markov chain is called irreducible if for each pair of states i, j ∈ I there is a s such

that p
(s)
ij > 0, i.e., any state can be reached from any other state in a finite number

of steps. A Markov chain is called aperiodic if the greatest denominator of all s such

that p
(s)
ii > 0 is 1, i.e., any state has a non-zero probability of staying unchanged. A

Markov chain is called ergodic if there exists a distribution π over I such that

lim
s→∞ p

(s)
ij = πj ∀i, j ∈ I

i.e., the chain converges to the stationary distribution π.

Necessary and sufficient conditions for a chain being ergodic are that it should

be irreducible and aperiodic, i.e., any finite Markov chain that is irreducible and

aperiodic is ergodic. An ergodic Markov chain with a doubly stochastic transition

matrix has a stationary distribution that is uniform.

Based on the above theoretical results, we can solve the random generation prob-

lem by constructing an ergodic finite Markov chain whose states correspond to ele-

ments in I and whose transition matrix is doubly stochastic. If the chain is allowed

to evolve in time, the distribution of the final state tends asymptotically to a uniform

stationary distribution over I, i.e., all elements in I are generated randomly with the

same probability 1
|I| . By simulating the chain for a sufficient number of steps and

outputting the final state, we are able to generate elements of I from a distribution

which is arbitrarily close to uniform.

For example, the following card-shuffling process based on random transpositions

generates a permutation of all cards uniformly at random [Sin93]. For a natural

number n, let Sn denote the set of permutations of the set [n] = {0, . . . , n − 1}.
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Consider a deck of n cards labelled with the elements of the set [n], and identify

ρ = (ρ0, . . . , ρn−1) ∈ Sn with ordering of the deck in which the ith card from the

top if ρi. We define a Markov chain with state-space Sn, and the transitions are

made by picking two cards from the deck at random and exchanging them. We

incorporate a self-loop probability for each state. This chain is irreducible because

a path exists between any two permutations. It is also aperiodic because of the

non-zero self-loop probability. Moreover, the transition matrix of the chain is doubly

stochastic. Therefore, the stationary distribution is uniform. It has also been shown

that the chain is rapidly mixing, i.e., it is close to stationary after visiting only a

small fractional of its state space. More specifically, the number of simulation steps

required to achieve tolerance ε is O(n4(n log n + log ε−1)).

6.4.2 The Random Generation Problem for INV

Let n and k be two integer numbers, n > 0 and 0 ≤ k ≤ n(n−1)
2

. The problem is to

generate a permutation A of the set [n] = {1, . . . , n} uniformly at random such that

|A| = n and INV (A) = k. Using the bijection between a permutation and its inver-

sion table we can translate this problem into generating the corresponding inversion

tables uniformly at random. Recall that the inversion table B = < b1, b2, . . . , bn >

of permutation A = < a1, a2, . . . , an > is obtained by letting bj be the number of

elements to the left of j that are greater than j. Hence the problem is to generate

the inversion table B uniformly at random such that |B| = n,
∑n−1

i=1 bi = k, and bi

satisfies the following properties

0 ≤ b1 ≤ n− 1, 0 ≤ b2 ≤ n− 2, . . . , 0 ≤ bn−1 ≤ 1, bn = 0.

For example, for n = 4 and k = 3, the permutations of length 4 and INV 3 and

their corresponding inversion tables are listed in Table 6.2.

To state it more clearly, we can think of each bi as a bin with a capacity of n−i and

the task as filling these n bins with k balls without violating the capacity constraints.

We construct a Markov chain whose states are all possible inversion tables of < n, k >,

or all possible bin-filling solutions. The transitions are made by picking up two bins i
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Table 6.2: Permutations and the Inversion Tables for n = 4, k = 3

Permutations A Inversion Tables B
4 1 2 3 1 1 1 0
2 4 1 3 2 0 1 0
1 4 3 2 0 2 1 0
3 2 1 4 2 1 0 0
3 1 4 2 1 2 0 0
2 3 4 1 3 0 0 0

and j at random, and transferring one ball from bi to bj whenever possible. If i = j,

or |bi| = 0, or bj is already full, then do nothing. Therefore we automatically have

a non-zero self-loop probability. We start a random walk like this in the state-space,

and after enough steps stop and return the current state (an inversion table) and

convert it into a permutation. The algorithm is listed in Figure 6.1. We now prove

the algorithm can generate a permutation with number of inversions of k uniformly

at random.

Theorem 11 The Markov chain generated by algorithm 6.1 is irreducible.

Proof: A Markov chain is irreducible if any two states of the chain intercommunicate,

that is, there is a path of non-zero probability from any state reaching another state.

We show this by constructing a canonical path from any legal inversion table B =

< b1, b2, . . . , bn > with
∑n

i=1 bi = k to the inversion table U = < k, 0, . . . , 0 >. From

any B 6= U , there is a non-zero probability of picking up a pair < i, j > such that

i = 1, j > 1 and Bj ≥ 1. So we will have to decrease bj and increase b1 by 1 at each

pick until we reach U . The reverse process is also true. Therefore there always exists

a path of non-zero probability between any two states of the chain. This shows the

chain is irreducible. 2

Theorem 12 The Markov chain generated by algorithm 6.1 is aperiodic.

Proof: A Markov chain is aperiodic if it is always possible for the chain to stay at

the same state. This is easy to see from step 2 of the algorithm. The chain will
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Input: length of the permutation (n), number of inversions (k),

number of iterations (N), 0 ≤ k ≤ n(n−1)
2

.
Output: A permutation A of {1, . . . , n} and INV (A) = k.

Step 1: Initialize a legal inversion table B =< b1, b2, . . . , bn >
such that

∑n
i=1 bi = k.

Step 2: Repeat the next loop N times:
Pick up two numbers 1 ≤ i, j ≤ n uniformly at random;
If i = j, or bi = 0, or bj = n− j, then do nothing;
else bi = bi − 1, bj = bj + 1 .

Step 3: Convert the current inversion table B into the corresponding
permutation A and return A.

Figure 6.1: Algorithm: Randomly Generating Permutation with INV = k

stay unchanged when the “if” condition in step 2 is not satisfied (there is a self-loop

probability greater than zero). 2

Theorem 13 The transition matrix defined by algorithm 6.1 is doubly stochastic.

Proof: We have constructed the chain to have a symmetric transition matrix. Paths

between two states have the same probability in both directions. There is a self-loop

probability in step 2 that equals to one minus the probability of other moves. For

example, the transition matrix for n = 4, k = 3 is shown in Table 6.3. Therefore,

rows and columns of the transition matrix both add to one. 2

Theorem 14 The Markov chain generated by algorithm 6.1 is ergodic and it con-

verges to a uniform stationary distribution.

Proof: Following from the previous theorems, the chain is irreducible, aperiodic, and

doubly stochastic; therefore it is ergodic and its stationary distribution is a uniform

one. 2
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Table 6.3: Transition Matrix Defined by Algorithm 6.1

0210 1110 1200 2010 2100 3000
0210 7/9 1/9 1/9 0 0 0
1110 1/9 5/9 1/9 1/9 1/9 0
1200 1/9 1/9 7/9 0 0 0
2010 0 1/9 0 6/9 1/9 1/9
2100 0 1/9 0 1/9 6/9 1/9
3000 0 0 0 1/9 1/9 7/9

6.4.3 The Random Generation Problem for RUN

Here we have n > 0 and 1 ≤ k ≤ n. The problem is to generate a permutation A of

the set [n] = {1, . . . , n} uniformly at random such that |A| = n and RUN(A) = k.

This time we use the bijection for RUN as shown in Table 6.1 to translate this

problem into generating the corresponding two-line notation permutations uniformly

at random. Recall that there is a one-to-one correspondence between a permutation

with k runs and the permutation whose two-line notation has exactly k− 1 positions

where the upper-line element j is larger than the lower-line element m. Consider the

following example again:

u =




1 2 3 4
∧ ∨ ∨ ∨
4 1 2 3


 ⇔ v = φ(u) = < 4 3 2 1 > .

To generate v with RUN(v) = 4, we can first generate u =< 4 1 2 3 > whose

two-line notation has 3 positions where j > m, and then recover v = φ(u) from u.

Note that the upper-line in the two line notation is always < 1 2 3 4 >.

Again we construct a Markov chain with states that correspond to all possible

permutations and whose two-line notations have exactly k − 1 positions, where the

upper-line number is larger than the lower-line number. The transitions are made by

randomly picking up two columns of the two-line notation permutation and exchang-

ing the lower-line numbers if doing so does not change the property of having k − 1

positions where the upper-line number is larger. We start a random walk like this
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Input: length of the permutation (n), number of runs (k),
number of iterations (N), 1 ≤ k ≤ n.

Output: A permutation A of {1, . . . , n} and RUN(A) = k.

Step 1: Initialize a legal permutation B =< b1, b2, . . . , bn > as the lower-line
of the two-line notation permutation such that there are only k − 1
positions in B where bi < i;

Step 2: Repeat the next loop N times:
Pick up two numbers 1 ≤ i, j ≤ n uniformly at random;
If exchanging bi and bj destroys the property, then do nothing;
else exchange bi and bj.

Step 3: Convert the current two-line notation permutation B into the
corresponding permutation A = φ(B) and return A.

Figure 6.2: Algorithm: Randomly Generating Permutation with RUN = k

in the state-space of the chain; after enough steps, stop and return to the current

state (a permutation in two-line notation) and convert it back to the permutation

according to the bijection φ. The algorithm is listed in Figure 6.2. The proof of the

ergodic property is similar to that of algorithm 6.1.

6.4.4 The Random Generation Problem for LAS and REM

The problem is to generate a permutation A of the set [n] = {1, . . . , n} uniformly at

random such that |A| = n and LAS(A) = k or REM(A) = n − k. Here we have

n > 0 and 1 ≤ k ≤ n.

The bijection used for the random generation problem for LAS is the correspon-

dence between the set of all permutations of {1, 2, . . . , n} whose LAS are k and the

set of ordered pairs (P,Q) of tableaux formed from {1, 2, . . . , n}, where P and Q have

the same shape and the number of rows of P (or Q) is k. This problem is a little

more complicated because we need to take care of both the shape and the number of
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Input: length of the permutation (n), number of runs (k),
number of iterations (N), 1 ≤ k ≤ n.

Output: A permutation A of {1, . . . , n} and LAS(A) = k.

Step 1: Randomly generate a shape λ of k rows;
Initialize a pair of Young tableaux (P0, Q0) of shape λ;
boolean CHANGESHAPE = false.

Step 2: Repeat the next loop N times:
if(CHANGESHAPE) then randomly generate shape λ of k rows,

generate (P0, Q0) of shape λ uniformly at random;
else randomly generate a new pair of (P, Q) of shape λ,

set CHANGESHAPE to true if S(P0, Q0) is re-generated;

Step 3: Convert the current pair of tableaux (P, Q) to the
corresponding permutation A = S(P, Q) and return A.

Figure 6.3: Algorithm: Randomly Generating Permutation with LAS = k

rows of the tableaux.

The state-space of the chain contains all tableaux of k rows. Note that they may

have different shapes. Each shape represents a subspace of the whole state-space. In

the initialization step, we first generate a shape λ0 of k rows by randomly partitioning

n into k parts. Then we select two Young tableaux P0 and Q0 of shape λ0 uniformly

at random, i.e., filling the cells of the shape. This is done by inserting the number

n into a corner position of shape λ with the right probability, then inserting n − 1

into a corner of the remaining shape, etc. The random selection algorithm is given

in [NW78]. We then start the random walk in the state-space of the chain from P0

and Q0. At each iteration we use a random walk to explore the subspace defined by

the current shape. The transitions are made by randomly selecting (filling) a new

tableaux of the current shape. We change the shape when the initial point of this

subspace is regenerated. Simulating this process for a sufficient number of steps, we
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Figure 6.4: Algorithm Selection Meta-Reasoner for Sorting

stop and convert the current state, a pair of tableaux (P, Q) with the same shape

of k rows, to the corresponding permutation A = S(P, Q) defined by the Schensted

correspondence S, and then return A. The algorithm is described in Figure 6.3. The

proof of the ergodic property is also similar to that of algorithm 6.1.

6.5 Experiment Setups and Environment

The overall goal of our experiments is to use the machine learning-based approach

to investigate how instance features affect the performance of various sorting algo-

rithms. The algorithm space consists of five algorithms: insertion sort, shellsort,

heapsort, mergesort, and quicksort. The feature space consists of instance size and

three measures of presortedness: INV, RUN and REM. The working procedure of the

sorting algorithm selection meta-reasoner is illustrated in Figure 6.4.

The experiments can be divided into three phases: data preparation, model induc-

tion, and model evaluation. In data preparation, we first generate a set of training
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permutations with different characteristic values. We then run all sorting algorithms

on these permutations and collect the algorithm performance data to get a simple

matrix like Table 6.4. We call this the training data. We use each algorithm’s running

time to measure its performance. The algorithm that consumes the least time in sort-

ing the instances is labelled as the best. For learning algorithms that require discrete

data, we need to first discretize the training data. In model induction, we run various

machine learning algorithms on the training data to induce the predictive algorithm

selection models. We will consider three basic models: decision tree learning (C4.5),

the naive Bayes classifier, and Bayesian network learning (K2). They are all used

as classifiers to catalog instances by the best algorithm to solve them. Finally, we

evaluate the learned classifiers and the overall performance of the algorithm selection

system using various test datasets.

Most of our learning experiments are conducted in Weka 3, an open-source ma-

chine learning software in Java. Weka [WF99] is a collection of machine learning

algorithms for solving real-world data mining problems. It contains tools for data

preprocessing, classification, regression, clustering, association rules, evaluation, and

visualization. For decision tree learning (C4.5) and the naive Bayes learning, we use

Weka’s implementations. For Bayesian network learning we have implemented our

own K2 and managed to plug it into Weka so that we can use Weka’s evaluation

modules. We also use Hugin’s implementation of the clique tree propagation algo-

rithm to build the methods for classifying new instances. In our experiments we use

the IBM High Resolution Time Stamp Facility to measure algorithm running time in

microseconds. Our hardware platform includes two Quad 450 Xeon Linux machines

and an 1GHz AMD Athlon WinXP machine. Most training instances are generated

on linux machines and all learning and evaluations are conducted on the Windows

machine.
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Table 6.4: Basic Experiment Setup: Instances vs. Algorithms

Feature 1 . . . Feature m Algo. 1 . . . Algo. n Best
Instance 1
Instance 2

. . .
Instance k

6.6 Experimental Results and Evaluation: The In-

duction of Predictive Algorithm Selection Mod-

els for Sorting

In this section we report the results of a series of learning experiments on sorting

algorithm selection. The first experiment is designed to verify some well-known ob-

servations about sorting algorithm performance on some specific datasets. The second

one is to determine which measure of disorder is the best feature for sorting algorithm

selection. The third applies various learning algorithms on the same training dataset

to determine which is the best model for sorting algorithm selection. The fourth ex-

periment evaluates overall performance of the learned model as a meta-level reasoner.

6.6.1 The Training Datasets

We have prepared 4 training datasets for our learning experiments. Let us call them

Dsort1, Dsort2, Dsort3, and Dsort4. The first three datasets contain instances of specific

characteristics. Dsort1 contains all possible permutations of {1, 2, 3, 4, 5, 6, 7, 8}, to-

taling 40,320 instances. This represents small size sorting instances. Dsort2 contains

500 nearly-sorted permutations of size 1,000. Dsort3 contains 500 randomly disordered

permutations3 of size 1,000. The fourth dataset, Dsort4, is designed to be the most rep-

resentative training dataset. It contains a total of 1,875 permutations of size varying

from 10 to 1,000 and presortedness measures varying from 0 to 1. More specifically,

3The random generation algorithm used is Algorithm 235(Random Permutation) in [Dur64].
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it is composed of the following seven smaller sub-datasets. The first sub-dataset con-

tains 525 permutations that are generated by setting the three presortedness measures

to {0.1, 0.3, 0.5, 0.7, 0.9} and the sizes to {10, 20, 50, 100, 200, 500, 1000}. The second

one includes 100 permutations of reverse order with size increasing by 10 from 10 to

1000. The third one contains 100 totally ordered permutations. The fourth one con-

tains 100 permutations in the form of {2, 1, 4, 3, 6, 5, 8, 7, 10, 9}, which all have small

numbers of inversions but large numbers of runs. The fifth sub-dataset contains 100

permutations in the form of {6, 7, 8, 9, 10, 1, 2, 3, 4, 5}. They all have small numbers of

runs but large numbers of inversions. The sixth one contains 500 randomly generated

permutations of size 1000, and the seventh contains 425 nearly-sorted permutations

of size 1000. For each permutation, we first compute three presortedness measures

INV, RUN, and REM and record the computational time of each measure. We then

run all 5 sorting algorithms on that permutation, record the running time of each

algorithm and the winner, i.e., the one that takes the least time to sort the instance.

6.6.2 Experiment 1: Verifying Sorting Algorithm Performance
on Some Specific Datasets

In this experiment we apply decision tree learning algorithm C4.5 on Dsort1, Dsort2

and Dsort3 to see what it can learn about these datasets with specific characteristics.

C4.5 on Dsort1: Instances of Small Sizes

Dsort1 contains all possible permutations of {1, 2, 3, 4, 5, 6, 7, 8}; totaling 40,320 in-

stances. For permutations of size 8, INV ∈ [0, 28], RUN ∈ [1, 8], REM ∈ [0, 7].

Without loss of generality, these presortedness measures have been normalized to [0,

1].. Distributions of each measure taking different values are illustrated in Figure 6.5.

Each of the three measures correspond to an intuitive idea of presortedness. INV

measures global presortedness, RUN measures local presortedness, and REM seems

to combine elements of both. However, they are not quite independent of each other.

Theoretically, comparing these measures is by no means an easy job. Figure 6.6

shows the relationships between INV, RUN and REM values of all permutations of
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Figure 6.5: Number of Permutations vs. Presortedness Measures (size = 8)
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Table 6.5: Statistics of INV, RUN and REM Values of Dsort1

INV RUN REM
Mean 0.50 0.50 0.60

StdDev 0.14 0.12 0.12

size 8. The statistics of each measure are listed in Table 6.5. When preparing the

training data, we compute these three measures and run all five sorting algorithms

for all permutations. We also record the computational time of each measure and the

running time of each algorithm. The average times are shown in Figure 6.7. From

the figure we can see that on average insertion sort is the fastest algorithm, and INV

takes the longest time to compute.

Table 6.6: Training Dataset Dsort1

Permutation Size Inv Run Rem Winner
1 8 0.0 0.0 0.0 shell
2 8 0.36 0.14 0.14 shell
3 8 0.07 0.14 0.14 insertion
. . . . . . . . . . . . . . . . . .

40,320 8 1.0 1.0 1.0 shell

The final training dataset fed into the learning algorithm consists of five attributes:

size, inv, run, rem, and winner, where the winner is the target attribute to be predicted

based on other attributes of the permutation in question. This is a typical supervised

learning, or classification, problem.

By applying C4.5 on Dsort1 we get the following result, as shown in Figure 6.8.

The learned decision tree has only one leaf: insertion. This means that the learner

“thinks” the best algorithm selection strategy for Dsort1 is just committing to the

insertion sort algorithm. The classification accuracy is 68.4449%. The confusion

matrix shows the numbers of misclassified instances of each class. The experimental
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Figure 6.6: The Relationships among INV, RUN and REM for Permutations of Size
8

142



Figure 6.7: The Computational Time of All Measures and the Running Time of All
Sort Algorithms on Dsort1

result verifies the following observation regarding to sorting algorithm selection for

small permutations.

Observation 1 Insertion sort is best for sorting small permutations.

C4.5 on Dsort2: Nearly Ordered Instances

Dsort2 contains 500 nearly-sorted permutations of size 1,000. These instances are

generated by swapping 10 pairs of randomly selected elements from the totally ordered

permutation. The statistics of Dsort2 are shown in Table 6.7. By applying C4.5 on

Dsort2 we also get a decision tree of one leaf, as shown in Figure 6.9: insertion. The

classification accuracy is 100% on Dsort1. This result verifies the following observation

of sorting algorithm selection on nearly-sorted permutations:
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=== Run information ===

Scheme: weka.classifiers.j48.J48 -C 0.25 -M 2

Relation: sorting

Instances: 40320

Attributes: 5 size inv runs rem winner

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

——————

: insertion (40320.0/12723.0)

Number of Leaves : 1

Size of the tree : 1

Time taken to build model: 11.41 seconds

=== Stratified cross-validation ===

Correctly Classified Instances 27597 68.4449%

Incorrectly Classified Instances 12723 31.5551%

Kappa statistic 0

Mean absolute error 0.1923

Root mean squared error 0.3101

Total Number of Instances 40320

=== Confusion Matrix ===




a b c d e < −− classified as
27597 0 0 0 0 | a = insertion
7850 0 0 0 0 | b = shell
289 0 0 0 0 | c = heap
4 0 0 0 0 | d = merge
4580 0 0 0 0 | e = quick




Figure 6.8: C4.5 Result on Dsort1
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Table 6.7: Statistics of INV, RUN and REM Values of Dsort2

INV RUN REM
Minimum 2.0E-6 0.0010 0.0010
Maximum 0.0040 0.0020 0.0020

Mean 0.0014 0.0020 0.0020
StdDev 9.5E-4 4.5E-5 4.48E-5

Table 6.8: Statistics of INV, RUN and REM Values of Dsort3

INV RUN REM
Minimum 0.47 0.47 0.93
Maximum 0.53 0.52 0.95

Mean 0.50 0.50 0.94
StdDev 0.01 0.009 0.003

Observation 2 Insertion sort is best for sorting nearly sorted permutations.

C4.5 on Dsort3: Random Instances

Dsort3 contains 500 random permutations of size 1,000. They are generated by

Durstenfeld’s random permutation generation algorithm [Dur64]. The statistics of

Dsort3 are shown in Table 6.8. Applying C4.5 on Dsort3 we again get a decision tree of

one leaf as shown in Figure 6.10. However, this time the selected algorithm is quick

sort. The classification accuracy is 95.2% on Dsort3. This result verifies the following

observation of sorting algorithm selection on random disordered permutations:

Observation 3 Quick sort is best for sorting random disordered permutations.
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=== Run information ===

Scheme: weka.classifiers.j48.J48 -C 0.25 -M 2

Relation: sorting

Instances: 500

Attributes: 5 size inv runs rem winner

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

——————

: insertion (500.0)

Number of Leaves : 1

Size of the tree : 1

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

Correctly Classified Instances 500 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0

Root mean squared error 0

Total Number of Instances 500

=== Confusion Matrix ===




a b c d e < −− classified as
500 0 0 0 0 | a = insertion
0 0 0 0 0 | b = shell
0 0 0 0 0 | c = heap
0 0 0 0 0 | d = merge
0 0 0 0 0 | e = quick




Figure 6.9: C4.5 Result on Dsort2
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=== Run information ===

Scheme: weka.classifiers.j48.J48 -C 0.25 -M 2

Relation: sorting

Instances: 500

Attributes: 5 size inv runs rem winner

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

——————

: quick (500.0/24.0)

Number of Leaves : 1

Size of the tree : 1

Time taken to build model: 0.24 seconds

=== Stratified cross-validation ===

Correctly Classified Instances 476 95.2%

Incorrectly Classified Instances 24 4.8%

Kappa statistic 0

Mean absolute error 0.037

Root mean squared error 01361

Total Number of Instances 500

=== Confusion Matrix ===




a b c d e < −− classified as
0 0 0 0 0 | a = insertion
0 0 0 0 1 | b = shell
0 0 0 0 15 | c = heap
0 0 0 0 8 | d = merge
0 0 0 0 476 | e = quick




Figure 6.10: C4.5 Result on Dsort3
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Table 6.9: Statistics of INV, RUN and REM Values of Dsort4

size INV RUN REM
Minimum 10 0.0 0.0 0.0
Maximum 1000 1.0 1.0 1.0

Mean 556.80 0.35 0.35 0.54
StdDev 380.01 0.31 0.30 0.40

6.6.3 Experiment 2: Determining the Best Feature for Sort-
ing Algorithm Selection

In this experiment we use a representative training dataset, Dsort4, to determine the

best feature for sorting algorithm selection. Dsort4 contains 1,875 permutations with

size varying from 10 to 1,000 and presortedness measures varying from 0 to 1. The

distributions of size and presortedness measures in Dsort4 are visualized in Figure 6.11

and Figure 6.12. Their statistics are listed in Table 6.9.

Wrapper-based Feature Selection

We first apply a GA-wrapped C4.5 feature selection classifier on Dsort4 to see which

feature subset is the best. The wrapper uses C4.5 as the evaluation classifier to

evaluate the fitness of feature subsets. A simple genetic algorithm is used to search

the attribute space. Both the population size and the number of generations are 20.

The crossover probability is 0.6 and the mutation probability is 0.033. Figure 6.13

and Figure 6.14 shows the configurations and the running information of the wrapper-

based classifier. The GA converges at generation 13 and outputs the result subset:

{1, 2, 3, 4}. Thus, all features are selected, i.e., no other feature subset is better than

the complete feature set.

Individual Feature Comparison

A feature is good for algorithm selection if it takes a short time to compute and

has a higher classification accuracy. In order to investigate which feature is the best
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Figure 6.11: The Distribution of Size and INV of Dsort4
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Figure 6.12: The Distribution of RUN and REM of Dsort4
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=== Run information ===

Scheme: weka.classifiers.AttributeSelectedClassifier -B ”weka.classifiers.j48.J48 -C

0.25 -M 2” -E ”weka.attributeSelection.WrapperSubsetEval -B weka.classifiers.j48

.J48 -F 5 -T 0.01 -S 1 – -C 0.25 -M 2” -S ”weka.attributeSelection.GeneticSearch

-Z 20 -G 20 -C 0.6 -M 0.033 -R 20 -S 1”

Relation: sorting

Instances: 1875

Attributes: 5

size

inv

runs

rem

best

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

AttributeSelectedClassifier:

=== Attribute Selection on all input data ===

Search Method: Genetic search.

Population size: 20

Number of generations: 20

Probability of crossover: 0.6

Attribute Subset Evaluator (supervised, Class (nominal): 5 best):

Wrapper Subset Evaluator

Learning scheme: weka.classifiers.j48.J48

Scheme options: -C 0.25 -M 2

Accuracy estimation: classification error

Number of folds for accuracy estimation: 5

Figure 6.13: Parameters of Attribute Selection GA-Wrapper on Dsort4
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=== Run information ===

AttributeSelectedClassifier: GA-wrapped C4.5

Initial population Generation: 13

merit scaled subset merit scaled subset

0.15093 0.11721 (2) 0.05333 NaN (1 2 3 4)

0.15093 0.11721 (2) 0.05333 NaN (1 2 3 4)

0.14987 0.11810 (4) 0.05333 NaN (1 2 3 4)

0.05333 0.19907 (1 2 3 4) 0.05333 NaN (1 2 3 4)

0.06752 0.18717 (2 3 4) 0.05333 NaN (1 2 3 4)

0.06752 0.18717 (2 3 4) 0.05333 NaN (1 2 3 4)

0.13003 0.13474 (1 4) 0.05333 NaN (1 2 3 4)

0.05717 0.19585 (1 2 3) 0.05333 NaN (1 2 3 4)

0.12747 0.13689 (3) 0.05333 NaN (1 2 3 4)

0.15093 0.11721 (2) 0.05333 NaN (1 2 3 4)

0.05717 0.19585 (1 2 3) 0.05333 NaN (1 2 3 4)

0.07093 0.18431 (1 2) 0.05333 NaN (1 2 3 4)

0.29067 0.00000 (1) 0.05333 NaN (1 2 3 4)

0.12747 0.13689 (3) 0.05333 NaN (1 2 3 4)

0.14987 0.11810 (4) 0.05333 NaN (1 2 3 4)

0.29067 0.00000 (1) 0.05333 NaN (1 2 3 4)

0.13003 0.13474 (1 4) 0.05333 NaN (1 2 3 4)

0.12747 0.13689 (3) 0.05333 NaN (1 2 3 4)

0.15093 0.11721 (2) 0.05333 NaN (1 2 3 4)

0.15093 0.11721 (2) 0.05333 NaN (1 2 3 4)

Selected attributes: (1,2,3,4) : 4

Figure 6.14: Result of Attribute Selection GA-Wrapper on Dsort4
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for sorting algorithm selection, we first divide the 5-column training data Dsort2 into

three small training datasets Dsort4A, Dsort4B and Dsort4C . Each has 3 columns of

data. Dsort4A contains {size, INV, winner}. Dsort4B contains {size, RUN, winner}.
Dsort4C contains {size, REM,winner}. We run C4.5 on these three datasets to see

which gives the highest classification accuracy. The result shows that classification

accuracy of the model induced from Dsort4A is the highest: 94.51%. The confusion

matrices are shown as follows.

INV, Dsort4A :




a b c d e < −− classified as
780 9 0 0 2 | a = insertion
12 161 0 0 37 | b = shell
0 0 0 0 20 | c = heap
2 1 0 0 5 | d = merge
7 8 0 0 831 | e = quick




RUN,Dsort4B :




a b c d e < −− classified as
749 17 0 0 25 | a = insertion
12 159 0 0 39 | b = shell
1 0 0 0 19 | c = heap
3 1 0 0 4 | d = merge
52 11 0 0 783 | e = quick




REM,Dsort4C :




a b c d e < −− classified as
746 42 0 0 3 | a = insertion
100 78 0 0 32 | b = shell
0 0 0 0 20 | c = heap
2 1 0 0 5 | d = merge
15 11 0 0 820 | e = quick




We also compare the average computational time of each measure to see which

one takes the least time. The results show that on average RUN takes the least time

to compute: 76 microseconds, which is significantly better than INV (12,859) and

REM (15,021). We list the complete results in Table 6.10. Because the computational

time of RUN is significantly smaller than the other two measures and its classifi-

cation accuracy is only slightly worse than INV, we conclude that RUN is the best

presortedness measure for sorting algorithm selection.

Since RUN is the best feature, in the following two experiments we will use Dsort4B
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Table 6.10: Computation Time and Classification Accuracy of INV, RUN and REM

INV RUN REM
average time (microseconds) 12,859 76 15,021

accuracy (%) 94.51 90.19 87.68

as the training dataset. This saves us the time of computing INV and REM, while

we still have an acceptable classification accuracy of around 90%.

6.6.4 Experiment 3: Determining the Best Model for Sorting
Algorithm Selection

In this experiment, we induce the predictive model of sorting algorithm selection

from Dsort4B. As introduced in previous chapters, there are many representations

and learning schemes that can be applied. In the following we will investigate three

basic representations: decision tree, the naive Bayes, and Bayesian networks. We will

also look at three meta-learning schemes: bagging, boosting, and stacking.

In Bayesian network learning we need to first discretize the input data. In bagging

[Bre96], we use C4.5 as the base classifier to bag. The bag size was the same as

Dsort4B. The number of bagging iterations was set to 10. The boosting method used

was Freund & Schapire’s Adaboost M1 [FS96] method. The basis classifier used was

C4.5. The maximum number of boost iterations was set to 10. In stacking [Wol92],

the three base classifiers were C4.5, the naive Bayes classifier and Bayesian network

learning. The meta-classifier used was C4.5.

We run these 6 learning schemes on Dsort4B and compare the results to see which

one learns the best model; i.e., the one that has highest classification accuracy and

needs the least reasoning time when classifying the new instance.

The experimental results of these 6 learning schemes are listed in Table 6.11.

We can see that Bayesian network learning has the highest classification accuracy

at 90.45%. The second and third best models are bagging and C4.5. We also no-
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Table 6.11: Classification Accuracy of 6 Different Learning Schemes on Dsort4B

C4.5 NaiveBayes BayesNet Bagging Boosting Stacking
accuracy (%) 90.03 74.23 90.61 90.50 88.94 89.69
StdDev (%) 0.26 0.06 0.12 0.2 0.52 0.49

tice that NaiveBayes has the worst performance at only 74.23%; all other inducers’

classification accuracies are near 90%.

Confusion matrices of the first three best inducers − BayesNet, Bagging and C4.5

− are shown as follows:

BayesNet :




a b c d e < −− classified as
748 19 0 0 24 | a = insertion
11 162 0 0 37 | b = shell
1 0 0 0 19 | c = heap
3 1 0 0 4 | d = merge
43 14 0 0 789 | e = quick




Bagging :




a b c d e < −− classified as
748 17 0 0 26 | a = insertion
13 157 0 0 40 | b = shell
1 0 0 0 19 | c = heap
3 1 0 0 4 | d = merge
44 10 0 0 792 | e = quick




C4.5 :




a b c d e < −− classified as
750 18 0 0 23 | a = insertion
14 158 0 0 38 | b = shell
1 0 0 0 19 | c = heap
3 1 0 0 4 | d = merge
56 10 0 0 780 | e = quick




Besides classification accuracy, the time needed to classify an instance (reasoning

time), is also an important criterion to evaluate the sorting algorithm selection model.

Among the above three best models, the decision tree is the most efficient on classi-

fying a new instance because it simply applies a set of “if-then” rules. Bagging needs

to combine multiple models and vote to produce the final classification, so it takes a
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Table 6.12: Reasoning Time (microseconds) and Classification Accuracy (%) of the
Best Three Models

C4.5 BayesNet Bagging
accuracy 90.03 90.61 90.50

time 43.35 14,845.35 8,690

longer time. Bayesian networks are much slower compared to decision trees because

the reasoning process involves first discretizing the data and then performing infer-

ence (MAP) by propagation. We list the average reasoning times and classification

accuracies of the three models on Dsort4B in Table 6.12 to compare their performance.

We can see that while their classification accuracies are almost the same, decision

tree has a much better reasoning time. Therefore we can draw the conclusion that

among the models we have experimented with decision tree is the best for sorting

algorithm selection.

6.6.5 Experiment 4: Evaluating the Sorting Algorithm Se-
lection System

From our previous experimental results we know that RUN is the best feature and

C4.5 decision tree learning is the best learning scheme for sorting algorithm selection.

The learned decision tree is shown in Figure 6.15. It is the core of the sorting algorithm

selection system. When a new instance comes, the “meta-reasoner” first examines the

instance and calculates its features, including size and the number of runs. It then

uses the decision tree model to select the best algorithm according to the features.

Finally, it calls the selected algorithm and sorts the instance. The total time of this

process consists of three parts:

Ttotal = Texamining + Treasoning + Tsorting (6.9)

Obviously the algorithm selection system is worth having only if the time spent

on examining and reasoning can be compensated from the gain of selecting the best
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Figure 6.15: The Learned Decision Tree from Dsort4B
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Table 6.13: Statistics of Test Dataset Dsort5

Size INV RUN REM
Minimum 1,000 0 0 0
Maximum 1,000 0.52 0.52 0.95

Mean 1,000 0.26 0.26 0.05
StdDev 0 0.11 0.10 0.21

algorithm. In this section, we conduct experiment 4 to show that for some datasets

the algorithm selection system can actually provide the best overall sorting perfor-

mance. Our test data set Dsort5 contains 950 nearly-sorted instances and 50 randomly

disordered permutations of size 1,000. The statistics of Dsort5 are shown in Table 6.13.

The classification accuracy of our learned model on Dsort5 is 98.4%. There are

16 incorrectly classified instances out of a total of 1,000. The confusion matrix is as

follows.




a b c d e < −− classified as
942 0 0 0 0 | a = insertion
2 0 0 0 0 | b = shell
1 0 0 0 1 | c = heap
0 0 0 0 0 | d = merge
12 0 0 0 42 | e = quick




The total time of computing the RUN values on Dsort5 is Texamining = 91, 475

microseconds. The time of reasoning (classification) is Treasoning = 21, 723 microsec-

onds. The actual time spent on sorting is Tsorting = 211, 068 microseconds. Thus, the

total time consumed by the system during sorting Dsort5 is Ttotal = 324, 266 microsec-

onds. Approximately, the algorithm selection system spends 28% of the total time on

examining, 7% of the total time on reasoning, and 65% on sorting. Figure 6.16 com-

pares Ttotal of the algorithm selection system (the 6th bar) with the time of each sort

algorithm (first five bars) applying solely on Dsort5. We can see that the algorithm

selection system outperforms all sorting algorithms on this dataset. The last bar in

Figure 6.16 is the optimal sorting time which is collected by actually running all five
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sorting algorithms at the same time and using the first one that returns a sorted list.

The algorithm selection system would perform like that if it could save the time for

examining and reasoning and its classification error be 100%.

Figure 6.16: Time Spent by Each Algorithm on Dsort5

To see the working range of the algorithm selection system on such dataset, exam-

ine Figure 6.17 4. Figure 6.17 describes the change of computational time consumed

by insertion sort, quick sort, and the algorithm selection system as we incrementally

add 100 more randomly ordered instances to Dsort5. From Figure 6.17, we can see

that, for the first 950 nearly sorted instances, insertion sort uses the least amount of

time and quick sort uses the most amount of time. The algorithm selection system lies

in between because, comparing to insertion sort, the algorithm selection system takes

extra examining and reasoning time. As we start adding randomly ordered instances,

4In figure 6.17, Ttotal is the total time spent by the algorithm selection system, Ttotal =Texamining

+ Treasoning + Tsorting.

159



Figure 6.17: Working Range of the Algorithm Selection System (Dsort5)
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Figure 6.18: Time Spent by Each Sort Algorithm on Nearly Sorted Permutations

time used by insertion sort jumps up sharply and becomes the worst algorithm soon

after around the 965th instance is added. In the mean time, quick sort’s performance

is not affected as much. If we keep adding more randomly ordered instances, the al-

gorithm selection system will lose its advantage over quick sort little by little because,

compared to quick sort, it always takes some extra examining and reasoning time.

Finally, after around the 1070th instance ia added, quick sort outperforms the algo-

rithm selection system and becomes the overall best algorithm. The “working region”

of the algorithm selection system ranges approximately between 965 and 1070; i.e.,

the algorithm selection system performs the best if in the data set the ratio of nearly

ordered instances to randomly ordered instances is larger than around 1.58%(15/950)

and less than around 12.63%(120/950).

We have also evaluated the sorting algorithm selection system’s overall perfor-
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Figure 6.19: Time Spent by Each Sort Algorithm on Reversely Ordered Permutations

Figure 6.20: Time Spent by Each Sort Algorithm on Randomly Ordered Permutations
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mance on 3 other test datasets, all containing permutations of the same type. DSortTest1

contains 1,000 nearly-sorted instances. DSortTest2 contains 100 permutations in reverse

order. DSortTest3 contains totally 1,000 random permutations. The results are shown

in Figure 6.18, Figure 6.19, and Figure 6.20. The correspondent classification accu-

racies are 99.4%, 77% and 85.3%. For nearly-sorted permutations, insertion sort is

the best and the selection system ranks the second. The algorithm selection system

is outperformed by insertion sort only because it has to spend some extra time on

examining and reasoning. Because the classification accuracy is very high (99.3%),

the actual sorting time (the black portion of bar 6) is almost as good as the optimal

sorting time (bar 7). For permutations in reverse order, shellsort is the best and

slightly outperforms quicksort. The algorithm selection system is much better than

the worst algorithm insertion sort and slightly worse than all others. This is mainly

due to its low classification accuracy. For totally random permutations, quicksort is

the best. The algorithm selection system performs worse than all other algorithms

except insertion sort. This is because although its classification accuracy is 85.3%, it

misclassifies those 14.7% instances to insertion sort which is quadratic on these ran-

dom permutations. The underlying reason is that the tradeoff we made on selecting

RUN as the best predictive presortedness measure: although it takes least time to

compute, it can not distinct local disordered permutations from totally random ones

very well.

In all three tests, there is no case where the algorithm selection system is the

worst. The result suggests that knowing the underlying distribution of the input in-

stances could help the meta-level reasoner to have more flexible decision making and

thus gain the best performance. For example, if the meta-reasoner can quickly sense

that the distribution of the input instances have changed from nearly-sorted instances

to totally-random instances, it can then correspondingly modify its algorithm selec-

tion model and select the best algorithm for these most recent inputs without even

examining and reasoning on all input instances. However, this will require another

reasoner that acts at the meta-meta-level.
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6.7 Summary

We have applied the learning-based approach to sorting algorithm selection. Our

experimental results show that machine learning techniques can be used to build an

algorithm selection system to gain more efficient computation for polynomial prob-

lems such as sorting. In algorithm selection for polynomial computational problems,

time is the most important factor. Therefore, besides classification accuracy, the com-

putational time of the instance feature and the reasoning time of the model are crucial

criteria in determining which feature and which model are the best for algorithm se-

lection. In sorting, we have experimentally found that the number of runs of the

input permutation is the best feature and decision tree is the best model. The algo-

rithm selection system built using RUN and decision tree can provide the best overall

performance with a highly competitive classification accuracy (around 90%). The

system spends some time on meta-level examining and reasoning to select the best

sort algorithm before it starts sorting. By doing this it is able to achieve a better over-

all performance on some datasets containing both nearly-sorted and highly-random

permutations.
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Chapter 7

Algorithm Selection for the Most
Probable Explanation Problem

In this chapter, we apply the proposed machine learning-based approach to algo-

rithm selection for the Most Probable Explanation (MPE) problem. A MPE problem

instance consists of three components: network topology, CPTs, and the observed

evidence. Correspondingly, the instance features also include three categories: topo-

logical type and connectedness of the network; size and skewness of CPTs; and pro-

portion and distribution of evidence nodes. The MPE algorithms under consideration

include: exact clique-tree propagation algorithm, Gibbs sampling, forward sampling;

random restart hill-climbing, Tabu search, and Ant Colony Optimization.

7.1 The MPE Problem

Finding the most probable explanation is an important probabilistic inference problem

in Bayesian networks. Recall that a Bayesian network B is a pair (G,P ) where

G is a directed acyclic graph of n nodes and P is a set of prior and conditional

probability tables one for each node in G. An evidence E is a set of instantiated

nodes. An explanation for the evidence E is a complete assignment of all node values

{X1 = x1, . . . , Xn = xn} that is consistent with evidence E. The most probable

explanation is an explanation such that no other explanation has higher probability.

Given these notations and definitions, the MPE problem is defined as follows.
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THE MPE PROBLEM

INSTANCE: A triple (G,P, E) where (G,P ) defines a Bayesian network of n nodes

and E is an evidence set E = {E1 = e1, . . . , Ek = ek}.
QUESTION: Computing a MPE of E in (G, P).

It has been shown that exact MPE computation is NP-hard [Shi94]. Furthermore,

approximating MPE to within a constant ratio-bound is also NP-hard [AH98].

7.2 Algorithms for Finding the MPE

The MPE problem belongs to an important type of probabilistic inference problem

using Bayesian networks called belief revision. The other type of Bayesian network

inference problems is belief updating, which computes the posterior belief over the

query nodes given the evidence E. Belief updating is also known as probabilistic

inference. In practice, algorithms for belief updating can often be used for belief

revision, possibly with only slight modifications, and vice versa.

Bayesian network inference algorithms [Guo02] can be roughly classified as ex-

act or approximate. Exact algorithms include three main categories: conditioning,

clustering, and elimination. Approximation algorithms include model-simplification

methods, stochastic sampling algorithms, search-based algorithms, and loopy prop-

agation. In this chapter, we will study the problem of selecting the best out of six

different MPE algorithms: one exact algorithm, two sampling algorithms, two search-

based algorithms, and one hybrid algorithm combining both sampling and search. The

classification of these algorithms is shown in Figure 7.1.

7.2.1 Exact Algorithm: Clique-tree Propagation

Clique-tree propagation algorithm, also called junction-tree or join-tree propagation,

is the most popular exact algorithm for Bayesian network inference in practice. The

basic idea is converting the network topology to a probabilistic equivalent polytree by

clustering nodes into meganodes. It first transforms the network into a tree of cliques,
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Figure 7.1: Candidate MPE Algorithms

then performs belief propagation over the tree using Pearl’s linear time polytree prop-

agation algorithm [Pea88]. The first phase consists of moralization, triangulation, and

clique-tree identification. The second phase is a two-way message propagation. When

applied to belief updating, the second phase performs a summation propagation. For

finding the MPE, it performs a maximization propagation. For details of the algo-

rithm, we refer readers to [HD96, Nea90, LS88]. The clique-tree propagation’s time

and space complexities are both exponential in the size of the largest clique of the

transformed undirected graph. In practice, it works well for sparse networks even if

the size of network is very large (up to one thousand nodes, for example). However,

as the network becomes dense, the algorithm often runs out of memory before you

can feel the exponential growth of time. In our study, we will use Hugin’s imple-

mentation of clique-tree propagation, which is currently the standard and the best

implementation available.
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7.2.2 Stochastic Sampling Algorithms

Stochastic sampling algorithms [CD00] can be divided into importance sampling al-

gorithms and Markov Chain Monte Carlo (MCMC) methods. They differ from each

other in the way samples are drawn. In importance sampling algorithms, samples are

drawn independently from an importance function. The importance function can be

different from the CPTs, and they may be updated during the sampling process as

well. In MCMC methods, the samples are drawn depending on the previous samples.

The sampling distribution of a variable is computed from its previous sample given the

states of its Markov blanket nodes. Importance sampling algorithms include Logic

Sampling [Hen88], Forward Sampling (Likelihood Weighting) [FC89, SP89], Back-

ward Sampling [FF94], Self-Importance Sampling and Heuristic Importance Sampling

[SP89], Adaptive Importance Sampling [CD00], etc. MCMC methods are divided into

Gibbs sampling [Pea87, Pea88], Metropolis sampling, and Hybrid Monte Carlo sam-

pling [GG84, Mac98, GRS96]. Both sampling algorithms are easy to implement and

can be applied on a large range of network sizes. But, when the network is large and

the evidence is unlikely, the most probable explanation will also be very unlikely. The

probability of the algorithm being hit by any sampling schemes is low. This is the

main drawback of sampling algorithms.

Gibbs Sampling

Gibbs Sampling [Pea87, Pea88], also called Stochastic Simulation, is a Markov Chain

Meto Colo (MCMC) method. It starts from a random initial assignment, then gen-

erates a sample from the previous sample by randomly “flipping” the state of an

non-evidence node Xi. Xi is randomly selected and the sampling distribution P (Xi)

is computed from its previous sample given the states of its Markov blanket nodes.

P (Xi|X/Xi) = αP (Xi|π(Xi)
∏

j

P (Yj|π(Yj))) (7.1)

where α is a normalization constant and Yj is jth child of Xi. After generating

a given number of samples, the best sample so far is returned as the approximate
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Input: A BN (G,P ) and an evidence set E.
Output: A complete assignment u = (u1, . . . , un).

Step 1: Randomly generate an initial sample
that agrees with the evidence;
Set the best so far to the initial sample.

Step 2: Randomly select an non-evidence node Xi,
compute P (Xi) from the values of its Markov
blanket nodes in the previous sample, sample
from P (Xi) and set Xi to the sampled value.

Step 3: Evaluate the new sample and update
best so far, decrease n samplesNeeded.

Step 4: If n samplesNeeded > 0, goto Step 2;
else return best so far.

Figure 7.2: Gibbs Sampling for Finding the MPE

MPE. Research has shown although the convergence of Gibbs sampling is theoretically

guaranteed, the convergence rate is extremely slow.

Forward Sampling

Forward sampling [CD00] is an importance sampling algorithm in which the impor-

tance functions are the prior CPTs and never change. It samples each non-evidence

variable in turn according to topological order. The forward sampling algorithm for

the MPE problem is listed in Figure 7.3.

7.2.3 Search-based Algorithms

Search algorithms have been studied extensively in solving hard combinatorial opti-

mization problems. Since the MPE is a NP-Hard optimization problem, researchers

have applied various optimization algorithms to solve it- the best first search [SC99],
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Input: A BN (G,P ) and an evidence set E.
Output: A complete assignment u = (u1, . . . , un).

Step 1: For each non-evidence node Xi,
draw random sample from P (Xi|π(Xi)).

Step 2: Evaluate the new sample and update
best so far, decrease n samplesNeeded.

Step 3: If n samplesNeeded > 0, goto Step 1;
else return best so far.

Figure 7.3: Forward Sampling for Finding the MPE

linear programming [San91], stochastic local search [KD99], genetic algorithms [Men99],

etc. [Par02b] has also tried to convert the MPE problem to other NP-complete prob-

lem such as MAX-SAT, and then use SAT-solver to solve the MPE problem indirectly.

Search algorithms often use some meta-heuristic to guide the search in order to avoid

getting stuck into a local optima. The most popular meta-heuristics include var-

ious Hillclimbing algorithms [Hro01], Simulated Annealing [KGV83], Tabu Search

[GLW93], Genetic Algorithms [Gol89], etc.

Random-restart Hill Climbing

Hill climbing [Hro01] is a greedy local search method. It goes to its best neighbor

whenever possible. It is east to get stuck to a local optimal. Random-restart Hill

Climbing randomly restarts another Hill climbing when a local optimal is reached.

It stops after the stop criteria is satisfied and returns the best solution so far. The

success of this algorithm depends very much on the landscape of the search space. If

there are few local optimums, it will find a good solution very quickly.
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Input: A BN (G,P ) and an evidence set E.
Output: A complete assignment u = (u1, . . . , un).

Step 1: Randomly generate a start point
that agrees with the evidence;

Step 2: While the best neighbor B∗ is better
than the current point, update best so far,
decrease n samplesNeeded, move to B∗.

Step 3: If n samplesNeeded > 0, goto Step 1;
else return best so far.

Figure 7.4: Random-restart Hill Climbing for Finding the MPE

Tabu Search

Tabu search [GLW93, Hro01] is a heuristic based on local search. Local search al-

gorithms like Hill climbing are memory-less algorithms, which means the next step

depends only on the current feasible solution and not on the search history. The idea

of Tabu search is to store some information about a set of the last feasible solutions

generated, called a Tabu list, and use this information when generating

the next solution. Notice that the searcher moves to B∗ even it is worse than the

current point. This is the main difference from the local search algorithm. Usually

the update of the Tabu list is done by inserting the recently-visited point into the

Tabu list. Tabu search uses the Tabu list to forbid revisiting any points that have

been visited in the last k steps. This can avoid repetitions and short cycles. There are

some other advanced advanced features that can be added to improve Tabu search.

A simple Tabu search algorithm for the MPE problem is described in Figure 7.5.
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Input: A BN (G,P ) and an evidence set E.
Output: A complete assignment u = (u1, . . . , un).

Step 1: Randomly generate a start point
that agrees with the evidence and
Add it into the Tabu list.

Step 2: Find the best neighbor B∗ that is not
in the Tabu list; move to B∗

update best so far if necessary;
decrease n samplesNeeded; update Tabu list .

Step 3: If n samplesNeeded > 0, goto Step 2;
else return best so far.

Figure 7.5: Tabu Search for Finding the MPE

7.2.4 Hybrid Algorithm: Ant Colony Optimization for the
MPE Problem

Ant Colony Optimization (ACO) [DG97] studies artificial systems that take inspira-

tion from the behavior of real ant colonies and are used to solve hard combinatorial

optimization problems. The ACO meta-heuristic was first introduced by Dorigo in his

Ph.D. thesis [Dor92], and was recently defined by Dorigo, Di Caro and Gambardella

[DCG99].

Ant algorithm optimization was inspired by the observation of real ant colonies’

foraging behavior; in particular, how ants can find the shortest paths between food

sources and their nest. Ants deposit on the ground a chemical substance called

pheromone while walking from the nest to the food sources and vice versa. This

forms pheromone trails. Ants can smell pheromone and choose their path in favor

of the trails with strong pheromone concentrations. Other ants can also use the

pheromone trails to find the way to the food (or to the nest). Therefore pheromone

provides an indirect way of communications among the ant colony. It has been shown
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experimentally that this foraging behavior can give rise to the emergence of shortest

paths if employed by a colony of ants. A colony of ants is able to choose the shortest

path from the nest to the food source and back by exploiting the pheromone trails

left by the individual ants.

Based on this emergent behavior of ant colony, researchers have developed arti-

ficial ant systems to solve hard discrete optimization problems. In an ant system,

artificial ants are created to explore the search space simulating real ants searching

their environment. The objective values correspond to the quality of the food and the

length of the path to the food. An adaptive memory corresponds to the pheromone

trails. Also, the artificial ants can make use of a local heuristic function to help make

the decision among a set of feasible solutions. In addition, usually a pheromone evap-

oration mechanism is included to allow the ant colony to slowly forget its past history

so that it can direct its search towards new directions that have not been explored

in the past. ACO can be seen as a hybrid optimization algorithm that combines the

advantages of both sampling and search. Each ant is a sample and its search decision

making is affected by the pheromone dropped by previous ants. The search process

can be seen as a cooperative learning process.

The ant system was first used on the Travelling Salesman Problem (TSP) [DG97].

From then on, it has been applied to the Job Shop Scheduling Problem [CDMT93],

to the Graph Coloring Problem [DH97], etc.

The first task of applying ACO to any optimization problem is to restate the

problem as a shortest or longest path problem of ant systems. In the following, we

convert the MPE to a longest path ant search problem with conditional branches and

an order constraint.

In the ant system, artificial ants build solutions (explanations) of the MPE prob-

lem by moving on the problem network from one node to another. Ants must visit all

nodes in the topological order defined by the Bayesian network, i.e., all parent nodes

must be visited before visiting the child node. For evidence nodes, ants are only

allowed to take the branches that agree with the evidence. Each number of the CPT
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at one node represents a conditional branch. The memory of each ant contains the

already visited nodes and the selected branches, as well as three tables for each node:

a Pheromone Table (PT), a Heuristic Function Table (HFT), and an Ant Decision

Table (ADT). All three tables have the same structure as the CPTs. We use the

CPTs as the HFTs and they keep unchanged.

The ADT Ai = [aijk] of node i is obtained by the composition of the local

pheromone trail values τijk with the local heuristic values ηijk as follows:

aijk =
[τijk]

α[ηijk]
β

∑
j[τijk]α[ηijk]β

(7.2)

where j is the jth row and k the kth column of the corresponding table at the ith

node. α and β are two parameters that control the relative weight of pheromone

trails and heuristic values.

The probability with which an ant chooses to take which conditional branch while

building its tour is:

pij =
aijπi∑
j aijπi

(7.3)

where πi is the column index of the ADT and its value is conditioned on the values

of parent nodes of ith node.

After ants have built their tour (an explanation), each ant deposits pheromone

∆τijk on the corresponding pheromone trails (the conditioned branches of each node).

The pheromone value being dropped represents the quality of this solution. Since we

want to find the Most Probable Explanation, we use the likelihood of this tour as the

pheromone value. Suppose the generated tour is {x1, . . . , xn}, the pheromone value

is as follows:

∆τijk =

{
P (x1, . . . , xn) ifj = xi, k = π(xi)
0 otherwise

(7.4)

in which P (x1, . . . , xn) is computed by the chain rule:

P (x1, . . . , xn) =
n∏

i=1

P (xi|π(xi)) (7.5)

Updating the pheromone tables is done by adding a pheromone value to the corre-

sponding cells of the old pheromone tables. Each ant drops pheromone to one cell
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of each pheromone table of each node, i.e., the jth row, kth volume of the PT at

ith node. After dropping the pheromone, an ant dies. The pheromone evaporation

procedure happens just before ants start to deposit pheromone. The main role of

pheromone evaporation is to avoid stagnation when all ants end up selecting the

same tour. The pheromone tables are updated by the addition of new pheromone by

ants and pheromone evaporation as follows:

τijk = (1− ρ)τijk + ∆τijk (7.6)

where τijk =
∑m

l=1 ∆τijk, m is the number of ants at each iteration, and ρ ∈ (0, 1] is

the pheromone trail decay coefficient.

In practice, an optional daemon activity can be added to collect useful global

information to drop additional pheromone. In doing this, it will bias the ant search

process from a non-local perspective. For example, a daemon can be can allowed to

observe all ants’ behavior, give extra “rewards” to the best ants and “punish” the

worst ants by adding and removing pheromone.

Figure 7.6 lists the basic ANT-MPE algorithm. After initialization, the algorithm

generates a batch of ants for several iterations. At each iteration, the ants sample

the ant decision tables to produce a trail, evaluate the trails by CPTs, and save best

sample of this iteration. Then pheromone is dropped and the pheromone tables are

updated. The pheromone evaporation and an optional daemon action are triggered

right after. At the end of each iteration, the ADTs are updated and normalized. This

procedure stops when the number of iterations runs out. The best solution so far is

returned as the approximate MPE. All parameter values are set at the initialization

step. The initial amount of pheromone is set to a same small positive constant on all

pheromone tables. The number of ants per iteration is set to 100.

7.3 Characteristics of the MPE Problem Instances

A MPE instance consists of three parts: the network, the CPTs, and the evidence.

The instance characteristics we will study are also centered around these aspects.
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Input: A BN (G,P ) and an evidence set E.
Output: A complete assignment u = (u1, . . . , un).

Initialization:
Initialize α, β, ρ, n interations, n ants;
Set PTs to 0, ADTs to uniform, HFTs to
CPTs; Set best trail so far to null.

Step 1: Generate n ants ant trails by sampling
the ADTs, compute the pheromone
values, decrease n interations, update
best trail so far

Step 2: Update PTs by dropping pheromone,
pheromone evaporation, and daemon actions.

Step 3: Compute new ADTs from CTs ,
and HFTs, normalize ADTs.

Step 4: If n interations > 0, goto Step 1;
else return best trail so far.

Figure 7.6: The ANT-MPE Algorithm

7.3.1 Network Characteristics

Network characteristics include network topological type and network connectedness.

Network Topological Type

By definition, all Bayesian networks are DAGs. Within DAGs, we distinguish between

single connected graphs and multiply connected graphs. In singly connected directed

graphs, there is at most one directed path between any two nodes. Multiply connected

graphs can have more than one path between two nodes, thus there are loops in the

graphs. Within singly connected graphs, we distinguish trees, polytrees, and two-level

networks. In trees (directed), each node can have only one parent. Polytrees allow
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one node to have more than one parents, but there are at most one path between any

two nodes in the underlying undirected graphs, i.e., the underlying undirected graph is

a tree. Two-level networks are also called noisy-OR models. They describe so-called

noisy-OR relation, which is a generalization of the logical OR. In a two-level noisy-

OR model, nodes at the root level represent all the possible causes and nodes at the

leaf level represent effects. In general, noisy-OR models provide a simpler model and

make the learning and inference easier. One famous example of noisy-OR network is

the QMR-DT network [SMH+91]. All trees and polytrees are singly connected, but

not vice versa. Two-level networks are singly connected because all paths have length

1. But they are not polytrees because their underlying undirected graphs can have

loops just as multiply connected graphs do.

A complex topology is more expressive than a simple one. But it also increases the

computational complexity. The inferences for both trees and polytrees are polynomial

because the underlying undirected graphs have tree structure. For graphs whose

underlying undirected graphs contain cycles, inference becomes intractable, i.e., the

general MPE problems for two-level networks and multiply connected networks are

both NP-hard [Shi94, SD02].

Network Connectedness

Let the number of nodes of a network be n nodes and the number of arcs be n arcs.

Network connectedness conn can be calculated as simply conn = n arcs
n nodes

. The simplest

topology, a polytree, has n− 1 arcs 1. The most complex topology, a fully connected

DAG, has n(n−1)
2

. Thus, conn lies between [n−1
n

, n−1
2

]. Usually, a graph is said to be

dense if conn > 2. In practice, the exact clique-tree propagation algorithm runs fast

on sparse networks. But if the network becomes dense, the induced-width (maximum

clique size) of its underlying undirected graph can be large. Because both the time

and space complexity of the clique-tree propagation algorithm are exponential in the

induced-width of the underlying undirected graph, it becomes intractable quickly as

1We assume the underlying undirected graph is a connected graph.
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the network becomes dense. Often times, we get an out-of-memory error before we

can feel the exponential growth of the running time.

7.3.2 CPT Characteristics

CPT characteristics include CPT size and CPT skewness.

CPT Size

A node’s CPT size is the number of cells in its CPT, which is the product of the

state space of its parents times its own state space. Since we fix the node state space

to binary, we can just use the number of parents of a node to measure the CPT

size. In our experiment, we consider the maximum number of parents of a node:

max parents. The performance of the exact algorithm is influenced by the conn

and the max parents because these factors affect the size of the largest clique of the

underlying undirected graph.

CPT Skewness

The skewness of the CPTs is computed as follows [JN96]: For a vector (a column of

the CPT table), v = (v1, v2, . . . , vm), of conditional probabilities,

skew(v) =

∑m
i=1 | 1

m
− vi|

1− 1
m

+
∑m

i=2
1
m

(7.7)

The skewness for the CPT of a node is the average of the skewness of all columns

whereas the skewness of the network is the average of the skewness of all nodes.

The skewness has an influence on the performance of the sampling and search-based

algorithms.

7.3.3 Evidence Characteristics

Evidence characteristics includes the proportion and the distribution of evidence

nodes. Let the number of evidence nodes be n evid. The evidence proportion is

simply n evid
n nodes

. Usually, more evidence nodes implies more unlikely evidence. Hence,
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the MPE will also be quite unlikely and the probability that it is hit with any sampling

scheme is not very high.

The distribution of evidence nodes will also affect the hardness of the MPE prob-

lem. If most evidence nodes are “cause” nodes, the problem is called predictive

reasoning. If most evidence nodes are “effect” nodes, the problem is called diagnostic

reasoning. It has been proven that in singly connected networks, predictive reasoning

is easier than diagnostic reasoning [SD02]. More specifically, strictly predictive belief

updating and belief revision in singly connected networks can be performed in time

linear in the size of the network, while diagnostic belief updating and belief revision

are NP-hard. “Strictly predictive” is defined as follows [SD02]:

Definition 27 Given a Bayesian network (G,P ), with evidence over a set of nodes

E, an inference problem is called strictly predictive if the evidence nodes have no

non-evidence parents in G.

Similarly, we define “Strictly diagnostic” as follows:

Definition 28 Given a Bayesian network (G,P ), with evidence over a set of nodes

E, an inference problem is called strictly diagnostic if the evidence nodes have no

non-evidence children in G.

In our experiments, we will consider three types of evidence distributions: strictly

predictive, strictly diagnostic, and randomly distributed evidence.

7.4 The Random Generation of MPE Instances

The random generation of MPE instances with controlled parameter values is also

based on the Markov-chain method we introduced before [IC02]. We construct and

simulate a Markov chain to “walk” randomly in the space of all possible networks

that satisfy our constraints. Such a Markov chain will be irreducible if any graph can

be reached from any other graphs. Also, the chain will be there if a non-zero self-

loop probability to guarantee the chain can stay unchanged. If the “random walk” is
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governed by a doubly stochastic transition matrix, the stationary distribution for the

Markov chain is uniform. The control parameters can include topological type, num-

ber of nodes, maximum and minimum number of arcs, maximum number of parents

of each node, number of states of each node, skewness of the CPTs, and so on. In our

experiment, we set the nodes to binary. We consider three topology types: polytree,

two-level singly connected networks and multiply connected networks. After gener-

ating the network and CPTs, we can randomly generate a set of evidence nodes of

the given type (predictive, diagnostic or random) to form a complete MPE instance.

Another aspect of instance features is the user’s requirement on computational re-

sources, i.e., the user can provide a computational “deadline” for the MPE problem.

Solutions must return before the deadline.

7.5 Experiment Setups and Environment

In the following experiments, we apply the proposed machine learning-based approach

to investigate algorithm selection for finding the MPE. The MPE algorithms include

an exact algorithm: the clique-tree propagation algorithm; two stochastic sampling

algorithms: Gibbs sampling and forward sampling; two heuristic search algorithms:

random restart hill-climbing and Tabu search; and one hybrid algorithm, the Ant

Colony Optimization (ACO) algorithm. The MPE instance features we will investi-

gate include number of nodes, network topological type, network connectedness, the

maximum number of parents, the network CPT skewness, and the proportion and

distribution of the evidence nodes.

The general MPE problem is NP-hard, which means we can not expect a polyno-

mial time algorithm assuming P 6= NP . Exact clique-tree propagation algorithm can

only solve polytrees and sparse networks efficiently. So our first goal is to identify the

class of MPE instances for which the clique-tree propagation algorithm is applicable.

When the exact algorithm is not applicable (most probably due to an out-of-

memory error), we need to look at various approximate algorithms. Our second goal

is to learn the predictive model that can determine which approximate algorithm is
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Figure 7.7: Algorithm Selection Meta-Reasoner for the MPE Problem

the best for the input MPE instance according to its characteristics. So far, the most

effective way to fairly compare different heuristic algorithms is to allow all algorithms

to consume the same amount of computation resources, with distinctions being based

on the quality of solutions obtained [RU01]. In our experiments, we will give each

algorithm a given numbers of samples or search-points and then compare the quality

of solutions that each algorithm returns. The algorithm returns the highest MPE will

be labelled as “winner”. We also record when the highest MPE is generated by the

algorithm. If two algorithms return the same MPE, the one that spends less time

(numbers of samples or search points) will be labelled as “winner”. The working

procedure of the MPE algorithm selection meta-reasoner is illustrated in Figure 7.7.

Again, our experiments consists of three phases: data preparation, model in-

duction, and model evaluation. In data preparation phase, we first generate MPE

instances with different characteristic values. We then run all algorithms on all train-

ing instances and collect the performance data to make the training dataset. We then
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run various machine learning algorithms on the training data to induce the predic-

tive algorithm selection models. Like what we did for sorting algorithm selection,

we will consider three different kinds of models: decision tree learning (C4.5), naive

Bayes classifier, and Bayesian network learning (K2). Finally, we evaluate the learned

classifiers and the MPE algorithm selection system.

7.6 Experimental Results and Evaluation: the In-

duction of Algorithm Selection Models for Find-

ing the MPE

In this section, we conduct a set of experiments to induce predictive algorithm selec-

tion models for the MPE problem. We will first extract characteristics of some real

world Bayesian networks. We then generate our training datasets based on these real

world characteristics. Once we have the training data, we apply machine learning

algorithms to induce the algorithm selection models. Finally, we evaluate the learned

models. Our first experiment is designed to learn the model to decide when the ex-

act clique-tree propagation algorithm is applicable to the input MPE instance. The

first experiment determines when the exact algorithm is applicable, i.e., it learns the

concept of “exactly computable”. The second experiment is designed to select the

best feature subset for approximate algorithm selection. In the third experiment, we

induce the approximate algorithm selection model that selects the best among a set

of sampling and search-based approximate MPE algorithms. The fourth experiment

compares the MPE algorithms’ performance on different specific datasets. The fifth

experiment is used to evaluate the learned model as a meta-level reasoner for MPE

algorithm selection.

7.6.1 Characteristics of Real World Bayesian Networks

Since the space of all possible MPE instances is infinitely large and at the same

time, many extreme characteristics are rarely encountered in real world applications,

it’s reasonable and necessary to consider only a subset of it, the set of “real world
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Table 7.1: Characteristics of Real World Bayesian Networks

name n nodes n arcs conn n roots maxParents skewness maxClique
alarm 37 46 1.24 12 4 0.84 5
barley 413 602 1.46 76 2 0.87 6

cpcs179 179 239 1.36 12 8 0.76 9
cpcs54 54 108 2.0 13 9 0.25 15

diabetes 413 602 1.46 76 2 0.87 6
hailfinder 56 66 1.18 17 4 0.50 5
insurance 27 52 1.93 2 3 0.70 8

link 724 1125 1.55 184 3 0.68 > 22
munin1 189 282 1.49 34 3 0.88 > 22
munin2 1003 1244 1.24 249 3 0.89 9
munin3 1041 1397 1.34 259 2 0.55 11

pigs 441 592 1.35 145 2 0.55 11
water 32 66 2.06 8 5 0.75 11

problems” (RWP). In order to simulate the set of real world Bayesian networks,

we first extract the real world distributions of all characteristic parameters from a

collection of real world samples, then generate Bayesian networks and MPE problem

instances based on the extracted distributions. Once we can generate synthetic real

world Bayesian networks and synthetic instances of real world inference problems, we

can then run our candidate algorithms on these instances to generate the training

data.

We have collected 13 real world Bayesian networks. Let us call this dataset

DRWBN . Their characteristics are listed in Table 7.1. From the analysis results,

we can see that the number of nodes varies from around 30 up to 1,000, the connect-

edness from 1.0 to 2.0, the maximum number of parents is below 10, and the skewness

varies from 0.25 to 0.87. The maximum clique sizes, if available, are all smaller than

20.
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7.6.2 The Training Datasets

We use the analysis results of real world Bayesian network characteristics to guide the

generation of training datasets. More specifically, we set the ranges of the instance

features as follows: n nodes ∈ {50, 100}; conn ∈ { 1.0-1.1, 1.1-1.2, 1.2-1.5, 1.5-1.8,

> 1.8 }; topology ∈ { polytree, twolevel, multiply }; maxParents ∈ { 3, 5, 8, 10};
skewness ∈ { 0.1, 0.5, 0.9 }; evidPercent ∈ { 0.1, 0.2, 0.3 }; evidDistribution ∈ {
predictive, diagnostic, random }.

The first training dataset, DMPE1, is used to induce the model that decides when

the exact clique-tree propagation algorithm should be selected. Both time and space

complexity of the exact algorithm are exponential in the maximum clique size of the

underlying undirected graph. In practice, an exact clique-tree propagation algorithm

is applicable only for sparse networks, which usually have smaller cliques. As the

network becomes dense, exact clique-tree propagation algorithms become infeasible

and often generate out-of-memory exceptions. In order to determine when to use an

exact inference algorithm, we generate DMPE1 as follows: We first randomly generate

networks with connectedness varying from 1.0 to 2.0 and maximum number of parents

varying from 3 to 10. The number of nodes used are {30, 50, 80, 100, 120, 150, 200}.
We then run Hugin on these randomly generated networks and record the perfor-

mance. To perform inference, Hugin first compiles the network into a clique tree.

We record the maximum clique size and label the network as “yes” instance if the

compilation is successful. Otherwise if it throws out an out-of-memory error, we label

the instance as “no”. DMPE1 has four numeric attributes: n node, topology, connect-

edness, and maxParents. The target class, ifUseExactAlgorithm, takes boolean values

representing whether exact algorithm is applicable or not. We also put these 13 real

world networks into DMPE1, which contains a total of 1,893 instances.

The second training dataset, DMPE2, is generated to induce the model to select

the best among a set of approximate MPE algorithms. Since polytrees are easy for

exact algorithm, DMPE2 only contains two-level and multiply networks. We generate

a set of networks with different characteristic values and then run all 5 approximate
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algorithms on all networks with different evidence settings. We run the approximate

inference algorithms for a given number of samples or search points and label the in-

stance using the best algorithm that returns the best MPE value using less samples or

search points. The total number of samples given to each algorithm was 300, 1000, or

3,000. DMPE2 has 8 attributes: n node, topology, connectedness, maxParents, skew-

ness, evidPercent, evidDistri, and n samples. The target class is the best algorithm

for this instance. DMPE2 contains 5,184 instances generated from 192 networks.

7.6.3 Experiment 1: Determining When the Exact MPE Al-
gorithm Is Applicable

In experiment 1, we first apply machine learning algorithms on DMPE1 to induce the

model to predict when the exact MPE algorithm should be used. We run the same 6

learning schemes used in the previous chapter − C4.5, naive Bayes, Bayes networks,

bagging, boosting and stacking − and compare the results to see which one learns

the best model; i.e., the one that has highest classification accuracy. The statistic of

DMPE1 is shown in Table 7.2.

Table 7.2: Statistics of Attribute Values in DMPE1

n nodes conn maxParents
Minimum 27 0.97 2
Maximum 1,041 4.27 10

Mean 122.30 1.53 4.50
StdDev 81.74 0.49 1.30

topology ifUseExactAlgo
label multiply twolevel polytree yes no
count 1293 278 322 1221 672

The experimental results are listed in Table 7.3. We can see that boosting C4.5 has

the highest classification accuracy of 94.81%. The second and third best models are

C4.5 and bagging C4.5. We also notice that NaiveBayes has the worst performance of
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Table 7.3: Classification Accuracy of 6 Different Learning Schemes on DMPE1

C45 NaiveBayes BayesNet Bagging Boosting Stacking
accuracy (%) 94.80 82.79 90.06 94.75 94.81 94.56
StdDev (%) 0.27 0.36 0.24 0.25 0.23 0.45

only 82.79%, while all other inducers’ classification accuracies are higher than 90%.

Since C4.5 and boosting have almost the same classification accuracy but C4.5

has a simpler model, we will use C4.5 as the best model for exact MPE algorithm

selection. The confusion matrix of C4.5 is as follows:

C4.5 :




a b < −− classified as
1, 153 68 | a = yes
31 641 | b = no




The learned decision tree is shown in Figure 7.8. From the structure of the tree

we can see that the basic rule for exact algorithm selection is that exact clique-tree

propagation algorithm is applicable if the network is small or sparse.

We also test the learned C4.5 and boosting model on 13 real world networks. The

classification accuracy of C4.5 is 84.62%; i.e., it correctly classify 11 out of 13 real

world instances. The confusion matrix is as follows:

C4.5 :




a b < −− classified as
9 2 | a = yes
0 2 | b = no




If we use boosting C4.5, all 13 networks can be correctly classified. The confusion

matrix is as follows:

C4.5 Boosted :




a b < −− classified as
11 0 | a = yes
0 2 | b = no




We have also tried cost-sensitive classification. It gives the same result for both

datasets. The cost matrix used is:
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Figure 7.8: The Learned Decision Tree for Exact MPE Algorithm Selection
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0 1 % if true class yes and prediction no, penalty is 1
10 0 % if true class no and prediction yes, penalty is 10

7.6.4 Experiment 2: Wrapper-based Feature Selection

In the following experiments, we look at the approximate MPE algorithm selection

problem. The training dataset used is DMPE2. The format of DMPE2 is shown in

Table 7.4. It contains 5,184 instances. Each instance has 9 attributes. The first 8

are predictive attributes and the last one is the target class attribute which labels

the best approximate algorithm for this instance. The statistics of DMPE2 are listed

in Table 7.5. We can see that Gibbs sampling has never been the winner while ant

colony optimization algorithm is the best for nearly half of the instances.

Table 7.4: Format of Training Dataset DMPE2

#nodes topology conn maxParents skewness evid% evidDist #samples bestAlgo
50 multiply 4.56 9 0.1 10 predictive 300 multi hc
50 multiply 4.56 9 0.1 10 random 300 aco
. . . . . . . . . . . . . . . . . . . . . . . . . . .
100 multiply 3.80 8 0.5 30 diagnostic 3000 aco
100 multiply 3.80 8 0.5 30 random 3000 aco

Like what we did for sorting, we first apply a GA-wrapped C4.5 feature selection

classifier to see which feature subset is the best. The wrapper uses C4.5 as the eval-

uation classifier to evaluate the fitness of feature subsets. A simple genetic algorithm

is used to search the attribute space. Both the population size and number of gener-

ations are 20. The crossover probability is 0.6 and the mutation probability is 0.033.

The configuration and the output of the GA wrapper is shown in Figure 7.9. The

feature subset selected by the GA is { n node, skewness, evidPercent, evidDistri,

n samples }. The classification accuracy of the induced model is 76.97%. The con-

fusion matrix is as follows:
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Table 7.5: Statistics of Attribute Values in DMPE2

#nodes conn maxParents skewness evid% #samples
Minimum 50 1.19 3 0.09 10 300
Maximum 100 4.88 10 0.90 30 3,000

Mean 75 2.49 5.64 0.50 20 1,433
StdDev 25 1.26 2.43 0.33 10 1,144

topology evidDist
label multiply twolevel predictive diagnostic random
count 3,240 1,944 1,728 1,728 1,728

bestAlgorithm
gibbsSampling forwardSampling multiHC tabu aco

count 0 862 1,077 578 2,667
percentage 0% 16.62% 20.78% 11.15% 51.45%




a b c d e < −− classified as
0 0 0 0 0 | a = gibbs sampling
0 645 0 0 217 | b = forward sampling
0 8 848 207 14 | c = multi hc
0 28 87 422 41 | d = tabu
0 435 98 59 2075 | e = aco




In the following experiments, we used the selected feature subset to learn the

predictive algorithm selection model.

7.6.5 Experiment 3: Determining the Best Model for Ap-
proximate MPE Algorithm Selection

In this experiment, we apply machine learning algorithms on the selected feature sub-

set of DMPE2 to induce the model for the selection of approximate MPE algorithms.

We ran the same six learning schemes on the selected subset of DMPE2 to see

which learns the best predictive model.The experimental results are shown in Ta-

ble 7.6. From the result, we can see that the model induced by C4.5 has the highest

classification accuracy of 77.75%. Naive Bayes classifier has the worst performance.
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=== Run information ===

Attribute Subset Evaluator (supervised, Class (nominal): 9 best algorithm):

Wrapper Subset Evaluator

Learning scheme: weka.classifiers.j48.J48

Scheme options: -C 0.25 -M 2

Accuracy estimation: classification error

Number of folds for accuracy estimation: 5

Selected attributes: 1,5,6,7,8 : 5

n node, skewness, evdiPercent, evidDistri, n samples

Figure 7.9: Parameters and Output of Attribute Selection GA-Wrapper on DMPE2

The classification accuracy of Bayesian networks learning K2 is 76.08%. The learned

Bayesian network is shown in Figure 7.10.

In the learned network two evidence nodes are disconnected from the graph. We

can draw two conclusions from this result: First, it shows that number of nodes,

skewness of the CPTs and the number of samples are three most important features

for MPE algorithm selection. Second, since we know from domain knowledge and

statistics of the training data that there exists a dependency relationships between

evidence characteristics and sampling algorithm performance, the result implies that

these dependencies are too weak for K2 to capture due to K2’s greedy search strategy.

The classification accuracies reported are test accuracies computed by ten-fold cross

validation. We draw the classification accuracies of all 10 folds for C4.5, naive Bayes,

and K2 in Figure 7.11.

Table 7.6: Classification Accuracy of 6 Different Learning Schemes on DMPE2

C4.5 NaiveBayes BayesNet Bagging Boosting Stacking
accuracy (%) 77.75 72.77 76.08 75.44 77.16 77.36
StdDev (%) 0.23 0.03 0.01 0.27 0.26 0.32
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Figure 7.10: The Learned BN for Approximate MPE Algorithm Selection

The confusion matrices of C4.5, naive Bayes classifier and K2 are shown as follows:

C4.5 :




a b c d e < −− classified as
0 0 0 0 0 | a = gibbs sampling
0 684 0 0 178 | b = forward sampling
0 9 856 203 9 | c = multi hc
0 25 88 424 41 | d = tabu
0 433 96 61 2077 | e = aco




naiveBayes :




a b c d e < −− classified as
0 0 0 0 0 | a = gibbs sampling
0 858 0 0 4 | b = forward sampling
0 9 1016 43 9 | c = multi hc
0 28 290 222 38 | d = tabu
0 833 134 23 1677 | e = aco




K2 :




a b c d e < −− classified as
0 0 0 0 0 | a = gibbs sampling
0 492 0 0 370 | b = forward sampling
0 7 912 147 11 | c = multi hc
0 25 142 370 41 | d = tabu
0 340 98 59 2170 | e = aco
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Figure 7.11: Classification Accuracies of Ten-fold Cross Validation

7.6.6 Experiment 4: MPE Algorithm Performance on Spe-
cific Datasets

We know from the result of feature selection that n node, skewness, n samples, ev-

idPercent and evidDistribution are the most relevant features for approximate MPE

algorithm selection. In this experiment, we use these features to partition DMPE2

into smaller subsets and compare the algorithm performance on these resulting spe-

cific sub-datasets.

Partitioning DMPE2 by Number of Nodes

Figure 7.12 shows the partition of DMPE2 by n nodes. We can see that number of

nodes affects the relative performance of two search algorithms while forward sampling

and ACO are almost not affected. As the network size increases from 50 to 100, multi-
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n Nodes Number of Times of Being bestAlgorithm
gibbsSampling forwardSampling multiHC tabu aco

50 0 496 380 439 1,277
100 0 366 697 139 1,390

Figure 7.12: Partitioning DMPE2 by Number of Nodes

193



start hill climbing becomes the best algorithm more frequently and the chances for

tabu search being the best drops significantly. This phenomenon can be explained by

the constant size of the tabu list used. When network becomes larger while the tabu

list remain the same size, the tabu list becomes relatively smaller. This may affect

tabu search’s performance and make it lose its best algorithm position to multi-start

hillclimbing.

Partitioning DMPE2 by Number of Samples

The time used by the algorithm is directly proportional to the number of samples.

Figure 7.13 shows the partition of DMPE2 by n samples. Again, the relative perfor-

mances of two search algorithms are affected, but forward sampling and ACO’s are

not. When the given number of samples increases from 300 to 1,000 to 3,000, tabu

search becomes the best algorithm more often and multi-start hillclimbing loses its

top rank. Tabu search seems to be able to utilize available number of search points

better than multi-start hillclimbing.

Partitioning DMPE2 by Skewness

Figure 7.13 shows the partition of DMPE2 by CPT skewness. we can see that skewness

has an significant influence on the relative performance of these algorithms. When the

skewness is low, the search space is flat and search algorithms perform much better

than sampling algorithms. Multi-start hillclimbing wins the best algorithm two times

more than tabu search. When the skewness is around 0.5, ACO outperforms all other

algorithms almost of the time. When the skewness increases to 0.9, forward sampling

and ACO are the winners. We should also notice that forward sampling works better

only for highly skewed networks and ACO works for both highly-skewed networks

and medium-skewed networks.

Partitioning DMPE2 by evidPercent

The more evidence nodes we have, the less likely the evidence is. Likelihood of the

evidence directly affects the sampling algorithm’s performance. Figure 7.15 shows the
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n Samples Number of Times of Being bestAlgorithm
gibbsSampling forwardSampling multiHC tabu aco

300 0 274 505 7 942
1,000 0 286 372 174 896
3,000 0 302 200 397 829

Figure 7.13: Partitioning DMPE2 by Number of Samples
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skewness Number of Times of Being bestAlgorithm
gibbsSampling forwardSampling multiHC tabu aco

0.1 0 0 1059 512 157
0.5 0 4 9 174 1677
0.9 0 858 9 28 942

Figure 7.14: Partitioning DMPE2 by CPT Skewness

196



partition of DMPE2 by evidPercent. In general, changing evidence percentage does

not affect two search algorithms’ relative performance. But it does affect forward

sampling and ACO. From the curves, we can see that ACO is out-performed by

forward sampling as the percentage of evidence nodes increases from 10% to 30%. We

should also note that evidence percentage’s influence is much weaker than skewness’.

Partitioning DMPE2 by evidDistribution

Figure 7.16 shows the partition of DMPE2 by evidPercent. We can see that the relative

performance of multi-start hillclimbing is not affected by evidence distribution. Tabu

search is only slightly affected. It seems as though diagnostic inference is relatively

hard for forward sampling but easy for ACO. Also, random distributed evidence is

relatively hard for ACO but easy for forward sampling.

Running All Algorithms on Three Real World Networks

In this section, we show the results of running all algorithms on three real world

networks without evidence: ALARM, CPCS54, and CPCS179. From Figure 7.17,

we can see that on ALARM, both forward sampling and ACO find the same MPE

after around 100 samples, but forward sampling hits the MPE earlier than ACO.

Figure 7.18 shows the search history of each algorithm running on CPCS54. The top

figure contains first 1,000 samples and the bottom figure contains total 5,000 samples.

We can see that in the first 300 samples, ACO is leading. After the first 300 samples,

however, forward sampling takes the lead until tabu search finds a better solution

after around 900 samples. However, the final winner is multi-start hillclimbing after

around 1,990 samples. This example shows that number of samples is an important

factor in determining the best algorithm for unskewed networks. Figure 7.19 shows

the search history of all algorithms on CPCS179. The trend in Figure 7.19 is very

similar to Figure 7.17. This is because both ALARM and CPCS179 have skewed

CPTs.
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evidPercent(%) Number of Times of Being bestAlgorithm
gibbsSampling forwardSampling multiHC tabu aco

10 0 248 358 165 957
20 0 281 348 208 891
30 0 333 371 205 819

Figure 7.15: Partitioning DMPE2 by Evidence Percentage
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evidDistri Number of Times of Being bestAlgorithm
gibbsSampling forwardSampling multiHC tabu aco

predictive 0 303 356 195 874
random 0 357 357 219 795

diagnostic 0 202 364 164 998

Figure 7.16: Partitioning DMPE2 by Evidence Distribution
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Figure 7.17: Search History of All Algorithms on ALARM Network

Verifying the results by C4.5 Decision Tree

From the previous analysis, we have learned some basic facts about the working

regions of these approximate MPE algorithms. In general, we have observed the

following results: First, skewness is the most important feature in determining the

best algorithm. Both search algorithms and sampling algorithms work better on

unskewed networks. Second, n nodes and n samples have an obvious influence on

the relative performance of multi-start hillclimbing and tabu search. But they have

very little influence on forward sampling and ACO. Third, evidence percentage and

distribution affect forward sampling and ACO very much, but generally they do not

affect search algorithms.

This knowledge can be verified from the decision tree learned by C4.5. The tree is

shown in Figure 7.20. We can see that the root node is skewness. The left branch of

the tree, representing low skewness instances, contains only multi-start hillclimbing

and tabu search. The right branch of the tree, representing skewed instances, con-
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Figure 7.18: Search History of All Algorithms on CPCS54 Network
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Figure 7.19: Search History of All Algorithms on CPCS179 Network
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tains only forward sampling and ACO. Also, in the left branch, mainly n nodes and

n samples are used to divide the instance space, which implies that their influence

on these two search algorithms is significant. In the right branch, evidPercent and

evidDistribution are used right after skewness to further divide the subbranches. Also,

this is the region where forward sampling and ACO are highly competing with each

other.

7.6.7 Experiment 5: Evaluating the MPE Algorithm Selec-
tion System

In this experiment, we evaluate the learned MPE algorithm selection system on two

test datasets. The algorithm selection’s first test dataset DMpeTest contains 405 in-

stances. Statistics of DMPETest are listed in Table 7.7. The second test dataset

is the real world dataset DRWBN . The system contains two classifiers, one for ex-

act algorithm selection, the other for approximate algorithm selection. Let us call

them exactMPESelector and approximateMPESelector. For a given MPE instance,

exactMPESelector determines if exact clique-tree propagation algorithm should be

used. If the classification result is “yes”, the system then execute the exact MPE al-

gorithm. If the classification result is “no”, the approximateMPESelector will be used

to select the best approximate algorithm. The selected algorithm is then executed

and the final MPE value returned.

System Evaluation on Synthetic Networks

We first apply exactMPESelector on DMpeTest. It identifies 243 “yes” instances cor-

rectly. Then we apply approximateMPESelector on the rest 162 “no” instances. The

result shows that there are 123 correctly classified instances and 39 incorrectly clas-

sified instances. The classification accuracy is 75.93%. The confusion matrix is as

follows:
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Figure 7.20: The Learned Decision Tree for Approximate MPE Algorithm Selection
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Table 7.7: Statistics of Attribute Values in DMPETest

n nodes conn maxParents
Minimum 50 0.98 3
Maximum 100 4.83 10

Mean 800 1.91 4.30
StdDev 24.52 1.20 2.12

topology ifUseExactAlgo
label multiply twolevel polytree yes no
count 135 135 135 243 162




a b c d e < −− classified as
0 0 0 0 0 | a = gibbs sampling
0 22 0 0 17 | b = forward sampling
0 0 17 4 1 | c = multi hc
0 0 0 4 2 | d = tabu
0 13 1 1 80 | e = aco




To show that the algorithm selection system outperforms any single algorithm,

we partition these 162 “no” instances into three groups according to their skewness.

There are 27 unskewed instances, 54 medium-skewed instances, and 81 highly-skewed

instances. For each group of instances, we plot the total MPE returned by each

algorithm and compare it with the total MPE returned by the algorithm selection

system. The results are shown in Figure 7.21, Figure 7.22 and Figure 7.23. On

medium-skewed and highly-skewed instances, the algorithm selection system returns

the largest total MPE values. On unskewed instances, the system returns the second

largest MPE value of 2.1 × 10−26. But the largest total, computed by multi-start

hill climbing, is only 2.2 × 10−26. The algorithm selection system’s result is almost

as good as it gets. Therefore, on all 162 instances, the algorithm selection system

returns the largest total MPE value and outperforms all algorithms. The returned

MPE values are listed in Table 7.8.
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Figure 7.21: Total MPE of All Algorithms on Unskewed Instances

Figure 7.22: Total MPE of All Algorithms on Medium-skewed Instances
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Figure 7.23: Total MPE of All Algorithms on Highly-skewed Instances

Figure 7.24: Search History of All Algorithms on Munin1 Network
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Table 7.8: Total MPE Returned by All Algorithms and the Algorithm Selection
System on Test Instances

skew Gibbs FS MHC TS ACO Total
0.1 4.7× 10−29 1.0× 10−27 2.2× 10−26 7.9× 10−27 1.1× 10−26 2.1× 10−26

0.5 1.4× 10−14 2.8× 10−8 6.2× 10−9 1.6× 10−7 6.0× 10−6 6.0× 10−6

0.9 1.9× 10−46 0.14 1.4× 10−10 2.5× 10−14 0.16 0.16

System Evaluation on Real World Networks

Now we test the system on real world networks. We have reported that using the

boosting C4.5 classifier all 13 real world networks can be correctly classified by ex-

actMPESelector. There are 11 “yes” networks. Exact MPE values of these 11 exactly

computable networks are listed in Table 7.9 along with the predicted best algorithm

and the best MPE returned by approximate algorithms. On these networks, all

predicted best approximate algorithms also agree with actual best approximate algo-

rithms.

The two “no” networks are link and munin1. The approximateMPESelector selects

ACO as the best approximate algorithm for both networks. link has 724 nodes and a

huge joint probability space of 5.77 × 10277 states. Its CPT skewness is 0.68. There

are 20,502 numbers in its CPTs and 13,715 of them are zeros. Given 5,000 number of

samples, all algorithms returned MPE of 0 for link. This is due to its huge state space

and low skewness. By applying greedy sampling, we can get a MPE of 1.04× 10−79.

munin1 has 189 nodes. Its state space has 3.23 × 10123 states. Its CPTs are more

skewed than link and has a skewness of 0.89. There are total 19,466 numbers in its

CPTs and 10,910 of them are zeros. Given 5,000 number of samples, ACO returns the

best MPE of 5.93× 10−8. Forward sampling finds the second best MPE of returned

6.61×10−9. All other algorithms only return 0. These results are also summarized in

Table 7.10. The search history of all approximate algorithms are shown in Figure 7.24.

The test results on both synthetic and real world networks illustrate that the pro-
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Table 7.9: MPE of 11 Exactly Computable Bayesian Networks

Network Predicted Predicted Best Exact Approximate
Best Algo. Appro. Algo. MPE Best MPE

alarm exact FS 0.04565 0.04565
barley exact ACO 3.67× 10−37 -

cpcs179 exact ACO 0.0069 0.0069
cpcs54 exact ACO 1.87× 10−11 5.78× 10−12

diabetes exact ACO 3.67× 10−37 -
hailfinder exact ACO 1.44× 10−12 3.44× 10−14

insurance exact FS 0.002185 0.002185
munin2 exact ACO 8.74× 10−37 1.23× 10−37

munin3 exact ACO 2.49× 10−37 7.07× 10−40

pigs exact ACO 5.03× 10−88 1.31× 10−141

water exact FS 3.08× 10−4 3.08× 10−4

Table 7.10: MPE of Link and Munin1

Network Number of Predicted Actual Best
Samples Best Algo. Best Algo. MPE

link 5,000 aco - 0
munin1 5,000 aco aco 5.93× 10−8

posed machine learning-based approach can be used to solve the algorithm selection

problem for the MPE problem. As a meta-level reasoner, the learned models can

be used to make reasonable decision on selecting exact and best approximate MPE

algorithms for the input MPE instance. The learned MPE algorithm selection system

provides the best overall performance for solving the MPE problem.

7.7 Summary

In this chapter, we have studied the use of machine learning-based approaches to build

an algorithm selection system for the MPE problem. The system consists of two pre-

dictive models (classifiers). The first one decides if exact MPE algorithm is applicable.

Its test classification accuracy is 94.80%. If the first classifier classifies the instance
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as “not exactly computable”, the second classifier is then used to determine which

approximate algorithm is the best for the input MPE instance. The second classifier

has a classification accuracy of 76.97%. Different MPE instance characteristics have

different properties and affect different algorithms’ performance. The experimental

results show that CPT skewness is the most important feature for approximate MPE

algorithm selection. It also shows that search-based MPE algorithms work better on

unskewed networks and sampling algorithms work better on skewed networks. Other

features, such as n nodes, n samples, evidPercent and evidDistri, all affect these al-

gorithms’ relative performance to some degree, although not as strong as skewness

does. Our learned algorithm selection system uses some polynomial time computable

instance characteristics to select the best algorithm for the NP -hard MPE problem

and gains the best overall performance in terms of the returned MPE values. This

scheme could be used for algorithm selection of other NP -hard problems as well. In

general, it is applicable to solve algorithm selection for any computationally hard

problems in various fields.
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Chapter 8

Conclusions

In this chapter we summarize the contributions of this work and identify the main

issues to be refined and studied in the future.

8.1 Contributions

In this thesis we have studied the algorithm selection problem both theoretically

and experimentally. We have also studied some multifractal properties of the joint

probability space of Bayesian networks and how to apply them to solve the MPE

problem.

Theoretically, we have shown the undecidability of the general automatic algo-

rithm selection problem by applying Rice’s theorem. We have also developed an

abstract framework of problem hardness and algorithm performance based on Kol-

mogorov complexity and applied it to the study of GA-hardness.

Experimentally, we have proposed and implemented a machine learning-based

algorithm selection system. The experimental results on sorting and the MPE prob-

lem have proven that this approach is useful for algorithm selection in both P and

NP -hard computational problems. For P problems, time is the most important cri-

teria. We accordingly look for instance features that can provide good classification

accuracy and are easy to compute compared to the actual computation time. For

NP -hard problems, the algorithm selection system consists of two classifiers. The

first one encodes the concept of “exactly computable”. The second one is responsible
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for selecting the best approximate algorithm.

In summary, the major contributions of this work consist of:

• A novel learning-based approach to automatic algorithm selection for sorting

and finding the MPE.

• An abstract theoretical framework of problem hardness and algorithm perfor-

mance based on Kolmogorov complexity, and proof of the infeasibility of a

purely analytical approach to building automatic algorithm selection systems.

• A multifractal analysis of the joint probability distributions of Bayesian net-

works and the use of the multifractal meta-heuristic for solving the MPE prob-

lem.

Other contributions include:

• A study of GA-hardness using the problem hardness and algorithm performance

framework.

• The development of a two phase Sampling-And-Search algorithm for finding the

MPE using the multifractal property of the JPD.

• Applying Ant Algorithms to solve the MPE problem.

• The development of a set of random instance generation algorithms for using

Markov chain technique.

The significance of this research lies in the following aspects:

1. This research is the first to systematically apply experimental algorithmic and

machine learning methods to solve the algorithm selection problem. It pro-

vides a practical machine learning-based approach to build algorithm selection

systems for both tractable and intractable problems. To the artificial intelli-

gence and machine learning community, this research identifies an important
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application field; − the empirical analysis of algorithms. The techniques devel-

oped in this research could also be very helpful in building real-time intelligent

systems that require highly efficient solvers or reasoning engines. To the ex-

perimental algorithmics community, the methodology applied in this research

introduces a set of powerful tools to analyze instance hardness and algorithm

performance; − machine learning and uncertain reasoning approaches. The ge-

netic algorithm and evolutionary computation community may benefit from the

theoretical results and the experimental methodology as well; − our approach

could be applied to help solve the notorious GA-hardness problem experimen-

tally.

2. The discovery of multifractal properties of Bayesian networks’ JPDs is very

original. It points out that the structure of a JPD can be analyzed by means

of the theoretical machinery developed in the field of fractals. Furthermore, we

have shown how the theoretical insight leads to an approximate algorithm for

finding MPE in Bayesian networks, an algorithm whose behavior can be pre-

dicted on theoretical grounds. To the community of uncertain AI and Bayesian

networks, it may lead to a series of results that will push the boundaries of

what we can do in both sampling and search-based algorithms. It also provides

a promising direction to general NP -hard problem solving because the MPE

problem (decision version) is NP -complete. It also provides a novel view of

multifractals for the multifractal community. The computational capability of

Bayesian networks may provide a powerful toolkit to manipulate multifractal

models.

3. This research is the first to apply an ant colony optimization algorithm to solve

the MPE problem. It is also the first one that thoroughly investigates the role of

skewness in Bayesian network inferences. The study of CPT skewness’ influence

on sampling and search-based inference algorithms’ performance provides new

knowledge to our understanding of the working regions of these algorithms.
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4. The random permutation generation algorithms developed provide for the first

time a uniform approach of generate permutations with a given degree of differ-

ent presortedness measures uniformly at random. This is very helpful to anyone

who wants to experimentally study various sorting algorithms’ performances.

8.2 Open Questions and Future Work

Many contributions of this work, including the methodology and the results of exper-

imental and theoretical investigations, are interesting on their own. However, they

also give rise to many questions and suggest a number of directions for future research.

In the following, we briefly mention some of these issues.

8.2.1 Theoretical Aspects

Information in Computation

The concept of “information” seems to play an important role in instance complex-

ity and algorithm performance. Knowing problem or instance specific information

can help us design more efficient algorithms. However, not all information is eas-

ily accessible. Given an instance, what information can we extract out of it? How

expensive it is? How can we measure the information that each algorithm contains

about the instances that it aims to solve? How does this information affect (abso-

lutely or relatively) instance hardness and algorithm performance? Also, the concept

of information here seems to be different from Shannon’s entropy and Kolmogorov’s

algorithmic information defined by program-size complexity. Since an algorithm be-

fore implementation is just an intuitive idea in a human’s mind, the information it

assumes could be wrong. This implies that the information in computation could be

“negative”. As pointed out by Gregory Chaitin [Cha02]: “Perhaps a new kind of

algorithmic information theory could be built in which lying plays a role and then

there would be negative information”. But how can we exactly formalize this concept

of “negative information”?
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GA-hardness Study

We have applied our abstract framework of instance hardness and algorithm perfor-

mance to the study of GA-hardness and propose some future directions. What could

be done next is to verify our hypothesis by applying the machine learning approach

to study GA-hardness. This will involve the problem of how to classify the space

of all possible GAs by their performance on some practical controllable optimization

problems.

8.2.2 Experimental Aspects

Random Generation

We have developed a set of random generation algorithms using the Markov chain

approach. However, the rate of convergence of these chains have not been theoretically

analyzed. Techniques used in [Sin93] can be applied to derive the rapidly mixing

bounds of these Markov chains.

Efficient Approximate Algorithms for Computing INV

In sorting, a number of inversions is the best indicator of many sort algorithms’

performance but it is almost as expensive as the actual sorting process to compute.

It would be very useful to have an efficient algorithm that approximates the number

of inversions in a given permutation.

Applying the Machine Learning-based Methodology to Algorithm Selec-
tion for Other Problems

We have applied the proposed learning-based approach for sorting and the MPE

problem. As an algorithm selection technique, it can be used for other problems as

well. For example, it can be used to solve the algorithm selection problem for belief

updating and MAP. Belief updating is a #P -problem and MAP is NP pp-complete

[Par02a]. In belief updating, the goal is to compute the marginal probabilities. MAP

is even harder because it includes both marginalization and maximization. Although
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CPT skewness plays plays an important role in the algorithm selection for the MPE

algorithm, this may not be true for belief updating and MAP. It is interesting to

investigate what feature is the most important one in algorithm selection within

these problems.

Real-time Learning: Adaptive to Input Instances Changes

In many real-world applications, distributions of the input instances may change over

time. Correspondingly, if the meta-reasoner can sense the distribution change of the

input instances and update its reasoning model from time to time, a better accuracy

can be achieved. This requires the meta-reasoner to put more weight on these most

recent input instances and to be adaptive by conducting sort of real-time learning. It

is interesting to investigate the related issues so as to build an autonomic algorithm

selection system.

8.2.3 Multifractal Analysis Study

We have applied the multifractal property of the joint probability space to design an

algorithm for the MPE problem. A natural followup is to investigate how to use it

to design algorithms for belief updating as well. Another promising direction is that

we can apply multifractal analysis to the solution space of other NP -hard problems

such as MAX − SAT and TSP . The multifractal meta-heuristic should be able to

apply to any NP -hard combinatorial optimization problem as well as being able to

solve any NP -hard combinatorial optimization problem.

216



Bibliography

[AH98] A. M. Abdelbar and S. M. Hedetniemi. Approximating MAPs for belief

networks in NP-hard and other theorems. Artificial Intelligence, 102:21–

38, 1998.

[AKS02] M. Agrawal, N. Kayal, and N. Saxena. PRIMES in P. 2002.

[AM88] S. Y. Abu-Mostafa. Random problems. Journal of Complexity, 4(4), 1988.

[Bet81] A. D. Bethke. GAs as Function Optimizers. PhD thesis, 1981.

[BG91] C. L. Bridges and D. E. Goldberg. The nonuniform Walsh-schema trans-

form. In G. J. Rawlins, editor, Foundations of genetic algorithms, pages

13–22. Morgan Kaufmann, San Mateo, 1991.

[BH90] J. S. Breese and E. Horvitz. Ideal reformulation of belief networks. In

UAI90, pages 129–144, 1990.

[BH91] A. Bunde and S. Havlin. Fractals and Disordered Systems. Springer, 1991.

[Boo63] J. Boothroyd. Algorithm 201: Shellsort. Comm. ACM, 8(6):445, Aug.

1963.

[Bor96] B. J. Borghetti. Inference algorithm performance and selection under

contrained resources. Master’s thesis, 1996.

[Bre96] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

217



[Bro93] C. Brodley. Addressing the selective superiority problem: Automatic

algorithm/model class selection. In Proceedings of the Tenth International

Conference on Machine Learning, pages 17–24, 1993.

[Bro94] C. Brodley. Recursive Automatic Algorithm Selection for Inductive Learn-

ing. PhD thesis, Amherst, 1994.

[CD00] J. Cheng and M. J. Druzdzel. AIS-BN: An adaptive importance sampling

algorithm for evidential reasoning in large Bayesian networks. Journal of

Artificial Intelligence Research, 13:155–188, 2000.

[CDMT93] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-

shop scheduling. Journal of Operations Research, Statistics and Computer

Science, 34:39–54, 1993.

[CFGS02] L. S. Crawford, M. P. J. Fromherz, C. Guettier, and Y. Shang. A frame-

work for on-line adaptive control of problem solving. In AAAI Spring

Symposium on Intelligent Distributed and Embedded Systems, Stanford,

CA, 2002.

[CH92] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9(4):309–347, 1992.

[Cha66] G. J. Chaitin. On the length of programs for computing finite binary

sequences. Journal of the Association of Computing Machinery, 13:547–

569, 1966.

[Cha87] G. J. Chaitin. Algorithmic Information Theory. Cambridge University

Press, Cambridge, 1987.

[Cha91] E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50–63,

1991.

[Cha02] G. Chaitin. Personal communication, September 2002.

218



[Che85] P. Cheeseman. In defense of probability. In Proceedings of the Ninth In-

ternational Joint Conference on Artificial Intelligence, pages 1002–1009.

Morgan Kaufmann, 1985.

[CKT91] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard

problems are. In Proceedings of the Twelfth International Joint Confer-

ence on Artificial Intelligence, IJCAI-91, Sydney, Australia, pages 331–

337, 1991.

[CL96] J. Culberson and J. Lichtner. On searching α-ary hypercubes and related

graphs. In R. K. Belew and M. D. Vose, editors, Foundations of Genetic

Algorithms 4, pages 263–290, 1996.

[Coh60] J. Cohen. A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20:37–46, 1960.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the Third ACM Symposium on Theory of Computing, pages

151–158, 1971.

[Coo90] G. F. Cooper. The computational complexity of probabilistic inference

using Bayesian belief networks. Artificial Intelligence, 42:393–405, 1990.

[Coo00] S. A. Cook. The P versus NP problem. 2000.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. John

Wiley and Sons, 1991.

[Cul98] J. Culberson. On the futility of blind search: An algorithmic view of No

Free Lunch. Evolutionary Computation Journal, 6(2):109–128, 1998.

[Dav91a] Y. Davidor. Epistasis variance: A viewpoint on GA-hardness. In G. J. E.

Rawlins, editor, Foundations of Genetic Algorithms. Morgan Kaufmann,

1991.

219



[Dav91b] T. Davis. Toward an Extrapolation of the Simulated Annealing Conver-

gence Theory onto the Simple Genetic Algorithm. PhD thesis, 1991.

[DCG99] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for

discrete optimization. Artificial Life, 5:137–172, 1999.

[DG97] M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman

problem. BioSystems, 43:73–81, 1997.

[DH97] D. Costa D and A. Hertz. Ants can colour graphs. Journal of the Oper-

ational Research Society, 48:295–305, 1997.

[DL93] P. Dagum and M. Luby. Approximating probabilistic inference in

Bayesian belief networks is NP-hard. Artificial Intelligence, 60:141–153,

1993.

[Dor92] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis,

1992.

[Dru94] M. J. Druzdzel. Some properties of joint probability distributions. In

UAI94, pages 187–194, 1994.

[DSG95] K. A. DeJong, W. Spears, and D. Gordon. Using markov chains to analyze

gafos. In L. D. Whitley and M. D. Vose, editors, Foundations of Genetic

Algorithms 3, San Francisco, CA, 1995. Morgan Kaufmann.

[Dur64] R. Durstenfeld. Algorithm 235: Random permutation. Communications

of the Association for Computing Machinery, 7:420, 1964.

[ECW92] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms.

ACM Computing Surveys, 24(4):441–476, 1992.

[EM92] C. J. G. Evertsz and B. B. Mandelbrot. Multifractal Measures, pages

921–953. Springer-Verlag, 1992.

220



[Fay91] U. M. Fayyad. On the induction of decision trees for multiple concept

learning. PhD thesis, Ann Arbor, MI, 1991.

[FC89] R. Fung and K. C. Chang. Weighting and integrating evidence for stochas-

tic simulation in Bayesian networks. In Uncertainty in Artificial Intelli-

gence 5, pages 209–219, 1989.

[FF94] R. Fung and B. D. Favero. Backward simulation in Bayesian networks. In

Proceedings of the Tenth Annual Conference on Uncertainty in Artificial

Intelligence, pages 227–234, San Francisco, CA, 1994. Morgan Kaufmann

Publishers.

[FI93] U. M. Fayyad and K. B. Irani. Multiinterval discretization of continuous-

valued attributes for classification learning. In Proc. of the 13th Interna-

tional Joint Conference on Artificial Intelligence IJCAi-93, 1993.

[Fin98] E. Fink. How to solve it automatically: Selection among problem solving

methods. In R. G. Simmons, M. M. Veloso, and S. Smith, editors, Pro-

ceedings of the Fourth International Conference on Artificial Intelligence

Planning Systems, pages 128–136, 1998.

[FM93a] S. Forrest and M. Mitchell. Relative building-block fitness and the

building-block hypothesis. In L. D. Whitley, editor, Foundations of Ge-

netic Algorithms 2, pages 109–126, San Mateo, CA, 1993. Morgan Kauf-

mann.

[FM93b] S. Forrest and M. Mitchell. What makes a problem hard for a GA : Some

anomalous results and their explanation. Machine Learning, 13(2-3):285–

319, 1993.

[Fre75] M. L. Fredman. On computing the length of longest increasing subse-

quences. Discrete Math., 11:29–35, 1975.

221



[FS96] Y. Freund and R. E. Schapire. Experiments with a new boosting algo-

rithm. In International Conference on Machine Learning, pages 148–156,

1996.

[GDH92] D. E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception

and genetic algorithms. In R. Manner and B. Manderick, editors, Parallel

Problem Solving from Nature 2, pages 37–46. North Holland, 1992.

[GG84] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution and

the Bayesian restoration of images. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 6(6):721–741, 1984.

[GGM+97] I. P. Gent, S. A. Grant, E. MacIntyre, P. Prosser, P. Shaw, B. M. Smith,

and T. Walsh. How not to do it. Technical Report Report 97.27, 1997.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NPCompleteness. Freeman, 1979.

[GLW93] F. Glover, E. Taillardand M. Laguna, and D. Werra. Tabu Search, vol-

ume 41. 1993.

[Gol87] D. E. Goldberg. Simple GAs and the minimal deceptive problem, pages

74–88. Pitman, London, 1987.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[Gol93] D. E. Goldberg. Making genetic algorithms fly: a lesson from the wright

brothers. 2:1–8, February 1993.

[Gol02] D. E. Goldberg. The Design of Innovation: Lessons from and for Com-

petent Genetic Algorithms. Kluwer Academic Publishers, 2002.

222



[Gre93] J. J. Grefenstette. Deception considered harmful. In L. D. Whitley, editor,

Foundations of Genetic Algorithms 2, pages 75–91, San Mateo, CA, 1993.

Morgan Kaufmann.

[GRS96] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo

in practice. Chapman and Hall, 1996.

[GS87] D. E. Goldberg and P. Segrest. Finite markov chain analysis of genetic

algorithms. In Proceedings of the Second International Conference on Ge-

netic Algorithms and Their Applications, pages 28–31, Cambridge, MA,

1987.

[GS97] C. P. Gomes and B. Selman. Algorithm portfolio design: Theory vs.

practice. In Uncertainty in Artificial Intelligence: Proceedings of the Thir-

teenth Conference (UAI-1997), pages 190–197, San Francisco, CA, 1997.

Morgan Kaufmann Publishers.

[Guo02] H. Guo. A survey of algorithms for real-time Bayesian network in-

ference. In H. Guo, E. Horvitz, W. H. Hsu, and E. Santos, editors,

AAAI/KDD/UAI-2002 Joint Workshop on Real-Time Decision Support

and Diagnosis Systems, Edmonton, Alberta, Canada, 2002.

[Hal99] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-

ing. PhD thesis, 1999.

[Har01] D. Harte. Multifractals: Theory and Applications. Chapman and Hall

CRC, 2001.

[HCR+00] E. N. Houstis, A. C. Catlin, J. R. Rice, V. S. Verykios, N. Ramakrishnan,

and C.E. Houstis. PYTHIA-II: a knowledge/database system for man-

aging performance data and recommending scientific software. TOMS,

26(2):227–253, 2000.

223



[HD96] C. Huang and A. Darwiche. Inference in belief networks: A procedural

guide. Intl. J. Approximate Reasoning, 15:225–263, 1996.

[Hec96] D. A. Heckerman. A tutorial on learning with Bayesian networks. Tech-

nical Report 95–06, Microsoft Research, 1996.

[Hen88] M. Henrion. Propagating uncertainty in Bayesian networks by probabilis-

tic logic sampling. In J. Lemmer and L. Kanal, editors, Uncertainty in

Artificial Intelligence 2, pages 149–163, 1988.

[HG95] J. Horn and D. E. Goldberg. Genetic algorithm difficulty and the modality

of fitness landscapes. In L. D. Whitley and M. D. Vose, editors, Founda-

tions of Genetic Algorithms 3, pages 243–269, San Francisco, CA, 1995.

Morgan Kaufmann.

[HK95] E. Horvitz and A. Klein. Reasoning, metareasoning, and mathematical

truth: Studies of theorem proving under limited resources. In Proceed-

ings of the Eleventh Annual Conference on Uncertainty in Artificial In-

telligence (UAI–95), pages 306–314, San Francisco, CA, 1995. Morgan

Kaufmann Publishers.

[Hoa61] C. A. R. Hoare. Algorithm 64: Quicksort. Comm. ACM, 4(7):321, June

1961.

[Hol75] J. H. Holland. Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor, MI, USA, 1975.

[Hoo94] J. N. Hooker. Needed: an empirical science of algorithms. Operations

Research, 42(2):201–212, 1994.

[Hor90] E. Horvitz. Computation and Action Under Bounded Resources. PhD

thesis, 1990.

[HRG+01] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D. M. Chick-

ering. A Bayesian approach to tackling hard computational problems.

224



In Proceedings of the Seventeenth Conference on Uncertainty in Artificial

Intelligence, August 2001.

[Hro01] J. Hromkovic. Algorithmics for Hard Problems. springer, 2001.

[HS01] S. Homer and A. L. Selman. Computability and Complexity Theory.

Springer Verlag New York, 2001.

[Hsu02] W. H. Hsu. Control of Inductive Bias in Supervised Learning using Evo-

lutionary Computation: A Wrapper-Based Approach. 2002.

[Hut01] H. Huttel. On Rice’s theorem, 2001.

[HZ95] W. H. Hsu and A. E. Zwarico. Automatic synthesis of compression

techniques for heterogeneous files. Software: Practice and Experience,

25(10):1097–1116, 1995.

[IBM02] IBM. High resolution time stamp facility, 2002.

[IC02] J. S. Ide and F. G. Cozman. Random generation of bayesian networks.

In Brazilian Symposium on Artificial Intelligence, Recife, Pernambuco,

Brazil, 2002.

[JF95] T. Jones and S. Forrest. Fitness distance correlation as a measure of prob-

lem difficulty for genetic algorithms. In L. Eshelman, editor, Proceedings

of the Sixth International Conference on Genetic Algorithms, pages 184–

192, San Francisco, CA, 1995. Morgan Kaufmann.

[JL95] G. H. John and P. Langley. Estimating continuous distributions in

Bayesian classifiers. In UAI95, pages 338–345, 1995.

[JN96] N. Jitnah and A. E. Nicholson. Belief network algorithms: A study of

performance based on domain characterization. In PRICAI Workshops,

pages 168–187, 1996.

225



[Joh90] D. S. Johnson. A catalog of complexity classes. In J. V. Leeuwen, editor,

Handbook of Theoretical Computer Science, Volume A: Algorithms and

Complexity, pages 69–161. 1990.

[Joh00] D. S. Johnson. Challenges for theoretical computer science. Technical

report, 2000.

[Joh02] D. Johnson. A theoretician’s guide to the experimental analysis of algo-

rithms. In M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch, ed-

itors, Data Structures, Near Neighbor Searches, and Methodology: Fifth

and Sixth DIMACS Implementation Challenges, pages 215–250. 2002.

[KD99] K. Kask and R. Dechter. Stochastic local search for Bayesian networks.

In International Workshop on Artificial Intelligence and Statistics, 1999.

[Kes01] M. Kessebhmer. Large deviation for weak Gibbs measures and multifrac-

tal spectra. Nonlinearity, 2001.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 1983.

[KHR+02] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and Bart Selman. Dynamic

restart policies. In Proceedings AAAI-2002, 2002.

[KJ97] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial

Intelligence journal, special issue on relevance, 97(1-2):273–324, 1997.

[KNR01] L. Kallel, B. Naudts, and C. R. Reeves. Properties of fitness functions

and search landscapes. In L. Kallel, B. Naudts, and A. Rogers, editors,

Theoretical Aspects of Evolutionary Computing, pages 175–206. Springer,

Berlin, 2001.

[Knu81] D. E. Knuth. The art of computer programming: Sorting and Searching,

volume 3. Addison-Wesley, 1981.

226



[Kol65] A. K. Kolmogorov. Three approaches to the quantitative definition of

information. 1:1–7, 1965.

[KP83] J. H. Kim and J. Pearl. A computational model for combined causal and

diagnostic reasoning in inference systems. In Proceedings of IJCAI-83,

pages 190–193, Karlsruhe, Germany, 1983.

[KP98] R. Kohavi and F. Provost. Glossary of terms. Machine Learning, 30:271–

274, 1998.

[Kra82] H. C. Kraemer. Kappa coefficient. John Wiley & Sons, New York, 1982.

[Lee90] J. V. Leeuwen, editor. Handbook of Theoretical Computer Science, Volume

A: Algorithms and Complexity. Elsevier and MIT Press, 1990.

[Lev86] L. Levin. Lecture botes on fundamentals of computing, 1986.

[LL00] M. G. Lagoudakis and M. L. Littman. Algorithm selection using reinforce-

ment learning. In Proc. 17th International Conf. on Machine Learning,

pages 511–518. Morgan Kaufmann, San Francisco, CA, 2000.

[LL01] M. G. Lagoudakis and M. L. Littman. Selecting the right algorithm. In

Proceedings of the 2001 AAAI Fall Symposium Series: Using Uncertainty

within Computation, Boston, MA, 2001.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with prob-

abilities on graphical structures and their application to expert system.

Royal Statistic Society, 50:154–227, 1988.

[LV90] M. Li and P. Vitanyi. Kolmogorov complexity and its applications. In

J. V. Leeuwen, editor, Handbook of Theoretical Computer Science, Volume

A: Algorithms and Complexity, pages 189–254. 1990.

[LV93] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its

Applications. Springer-Verlag, New York, 1993.

227



[Mac98] D. MacKay. Introduction to monte carlo methods. In M. Jordan, editor,

Learning in graphical models. The MIT Press, Cambridge, Massachusetts,

1998.

[Man72] B. B. Mandelbrot. Possible refinement of the lognormal hypothesis con-

cerning the distribution of energy dissipation in intermittent turbulence,

pages 331–351. Springer, NY, 1972.

[Man82] B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and

Co., NY, 1982.

[Man85] H. Mannila. Instance Complexity for Sorting and NP-complete problems.

PhD thesis, Department of Computer Science, University of Helsiki, 1985.

[Man89] B. B. Mandelbrot. Multifractal measures, especially for geophysicists.

Pageopg, 131(133), 1989.

[McG92] C. C. McGeoch. Analyzing algorithms by simulation: Variance reduction

techniques and simulation speedups. ACM Computing Surveys, 24:195–

212, 1992.

[McG02] C. C. McGeoch. Experimental analysis of algorithms. In P. Pardalos

and E. Romeijn, editors, Handbook of Global Optimization, Volume 2:

Heuristic Approaches. Kluwer Academic Publishers, 2002.

[Men99] O. J. Mengshoel. Efficient Bayesian Network Inference: Genetic Algo-

rithms, Stochastic Local Search, and Abstraction. PhD thesis, 1999.

[MFH91] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for GAs:

Fitness landscapes and GA performance. In Toward a Practice of Au-

tonomous Systems: Proceedings of the First European Conference on Ar-

tificial Life. MIT Press, 1991.

[Min96] S. Minton. Automatically configuring constraint satisfaction programs:

A case study. Constraints, 1(1/2):7–43, 1996.

228



[Mit97] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[MM00] G. Melancon and M. B. Melou. Random generation of DAGs for graph

drawing. Technical Report INS-R0005, Dutch research center for Mathe-

matical and computer science, 2000.

[Mor00] B. Moret. Towards a discipline of experimental algorithmics. In 5th

DIMACS Challenge, DIMACS Monograph Series, 2000.

[MSF+02] C. C. MaGeoch, P. Sanders, R. Fleischer, P. Cohen, and D. Precup.

Searching for big-oh in the data: Inferring asymptotic complexity from

experiments. In Lecture Notes in Computer Science: Proceedings of the

Dagstuhl Seminar on Experimental Algorithmics. Springer-Verlag, 2002.

[Nau98] B. Naudts. Measuring GA-hardness. PhD thesis, Antwerpen, Nether-

lands, 1998.

[Nea90] R. E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and

Algorithms. John Wiley and Sons, New York, 1990.

[NK98] B. Naudts and L. Kallel. Some facts about so called GA-hardness

measures. Technical Report 379, Centre de Mathématiques Appliquées,
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