TIME SERIES LEARNING WITH PROBABILISTIC NETWORK COMPOSITES

BY
WILLIAM HENRY HSU

B.S., The Johns Hopkins University, 1993
M.S.E., The Johns Hopkins University, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1998

Urbana, lllinois

TIME SERIES LEARNING WITH PROBABILISTIC NETWORK COMPOSITES
William Henry Hsu, Ph.D.
Department of Computer Science

University of lllinois at Urbana-Champaign, 1998
Sylvian R. Ray, Advisor

The purpose of this research is to extend the theory of uncertain reasoning over time
through integrated, multi-strategy learning. Its focus isdawomposable concept learning
problems for classification of spatiotemporal sequences. Systematic methods of task
decomposition using attribute-driven methods, especially attripartitioning , are investigated.

This leads to a novel and important type of unsupervised learning in which the feature
construction (or extraction) step is modified to account for multiple sources of data and to
systematically search for embedded temporal patterns. This modified technique is combined with
traditional cluster definition methods to provide an effective mechanism for decomposition of
time series learning problems. The decomposition process interacts with model selection from a
collection of probabilistic models such as temporal artificial neural networks and temporal
Bayesian networks. Models are chosen using a new quantitative (metric-based) approach that
estimates expected performance of a learning architecture, algorithm, and mixture model on a
newly defined subproblem. By mapping subproblems to customized configurations of
probabilistic networks for time series learning, a hierarchical, supervised learning system with
enhanced generalization quality can be automatically built. The system can improve data fusion
capability (overall localization accuracy and precision), classification accuracy, and network
complexity on a variety of decomposable time series learning problems. Experimental evaluation
indicates potential advances in large-scale, applied time series analysis (especially prediction and
monitoring of complex processes). The research reported in this dissertation contributes to the
theoretical understanding of so-calledapper systems for high-level parameter adjustment in

inductive learning.

History is Philosophy teaching by examples.
Thucydides (c. 460-c. 400 B.C.), Athenian historian.

Quoted by Dionysius of Halicarnassus Ars RhetoricaChapter 11, Section 2.

Acknowledgements

First and foremost, my utmost gratitude goes to my advisor, Sylvian R. Ray. Professor
Ray is one of those rare leaders who has shepherded not one but several research groups of the
highest caliber during his years in academia. To associate with him has truly been an honor and a
privilege. He is a true scholar, a generous and conscientious mentor, and a gentleman in every
sense of the word. Where our research interests differ, he has always lent an ear and an open
mind, and where they are similar, he has given tirelessly of his time, formidable experience, and
piercing insight. To emulate him is my lifelong aspiration.

| thank the members of my committee: David E. Goldberg, Mehdi T. Harandi, and David
C. Wilkins. Thanks to Professor Goldberg for an introduction to genetic algorithms and global
optimization, but also for teaching by example how to be a better engineer. The educational
clarity and the irrepressible drive for which he is known, and a few questions he asked at
important junctures, have been a great help to me. Professor Harandi introduced me to a number
of useful concepts in knowledge-based programming and software engineering, but equally
important, gave me an education in responsible research. He sets a high standard in research and
encourages others to follow, and | am grateful for the chance to participate in many interesting
and substantial discussions with him and his group. | also appreciate his good advice on some
important efforts, including, but not limited to, my dissertation. Finally, thanks to Professor
Wilkins for supporting me as a research assistant and for the opportunity to work in his
Knowledge-Based Systems Laboratory throughout most of my Ph.D. studies; it is a unique and
diverse group to which | am glad to have contributed. Interacting with the many KBS members
has been an interesting experience, and has led to a number of productive collaborations in
knowledge-based systems, machine learning, and applied research.

Thanks to my professors, classmates, and friends from my undergraduate school, the
Johns Hopkins University, for inspiring my appetite for research. | am especially grateful for the
tutelage of Amy Zwarico and Simon Kasif, who gave me an early introduction to software
engineering and intelligent systems

Special thanks to Jesse Reichler and Chris Seguin, members of Professor Ray’s research
group, who have patiently listened to my research ideas and presentations (and rehearsals) on
numerous occasions. Equally important, they taught me about areas that they knew better, and

held lively and rewarding discussions with me and with others during our years at UIUC. | look
forward to working and associating with both of them for many years to come.

My thanks to the following researchers at UIUC for valuable discussions about my thesis
research and for their candid and helpful feedback: Brendan Frey, Thomas Huang, Larry Rendell,
Dan Roth, and Benjamin Wah. Thanks also to the following researchers at other universities and
companies, who have given me feedback and advice during my years as a graduate student:
Robert Hecht-Nielsen, Rob Holte, Kai-Fu Lee, and Mehran Sahami. Thanks especially to Dr.
Hecht-Nielsen, who gave me advice on selecting a thesis topic at the 1996 World Congress on
Neural Networks. Also, thanks to Mehran Sahami for introducing me to related work on model

selection.

My appreciation and gratitude to experts in the areas of applied climatology, agricultural
engineering, agricultural economics, crop sciences, and computational methods for precision
agriculture who consulted me about experimental data. These include: Don Bullock, Mike
Clark, Tom Frank, Steven Hollinger, Don Holt, Doug Johnston, Ken Kunkel, John Reid, Bob
Scott, and Don Wilhite.

Thanks also to the students, research staff, and alumni of the UIUC Department of
Computer Science and the Beckman Institute, especially Eugene Grois, Ole Jakob Mengshoel,
and Ricardo Vilalta. I'd like to give special acknowledgement to the undergraduates at the KBS
Lab who worked on research projects with me during my time there, especially: Nathan Gettings
Yu Pan, and Victoria Lease. Nathan, Yu Pan, and Tori assisted with some experiments and
implementations relevant to my dissertation, and were also an important wellspring of culture for
me during the more grueling months of my research. Additionally, my thesis could not have been
completed without the friendly, helpful, courteous, and professional administrative staff at the
Beckman Institute, Aviation Research Lab, and Department of Computer Science. None of us

can do it without you!
Last but certainly not least, | thank my parents for all their encouragement and love.
| have thanked a great many people, yet | know | have left some out. Mei-Yuh Hwang

guoted a proverb in the acknowledgements section of her thesis that advises: when one is blessed
with too many people to thank, one should thank God. | do.

Vi

1. INTRODUCTION ...ttt e s 1

1.1 Spatiotemporal Sequence Learning with Probabilistic Networks................voviiiiiiiniieinnn, 2
111 Statistical and Bayesian Approaches to Time Series Learningooovvvvvvviiiiiiiiiiieeiiiiiiiiiiiiinns 2
1.1.2 Hierarchical Decomposition of Learning Problems ... 3
113 Constructive Induction and Model Selection: State of the Field..............cccooeiiiiiiiiiiis 4
1.14 Heterogeneous Time Series, Decomposable Problems, and Data Fusion..............cccceeeeeeiieeeeen. 5
1.15 SYSEEIM OVEIVIEW ...ttt e e e e ettt ettt e e e e e e e s emnneees 7...

1.2 Problem Redefinition for Concept Learning from Time SErieS.........uuuueiiiiiiiieeeiiiiiiiiiiiiiiiiins 8
1.21 Constructive Induction: Adaptation of Attribute-Based Methods..............ovvviiiiiiiiiiien, 8
1.2.2 Change of Representation iN TIME SEIES........uuuuuiiii e 8
1.2.3 Control of Inductive Bias and Relevance Determinination..............oovvvviriiiiininnneeeeeeeeeennnns 8

1.3 Model Selection for Concept Learning from Time SerieS..........oovviiiiiiiiiiiiiiniiieeeeeeeeeeeeeeeiiiiie 9
1.3.1 Model Selection in ProbabiliStic NETWOIKS.iiiiiiiiieii e 9
1.3.2 Metric-Based MethOdScoooiiiiiiii e 10.......
1.3.3 Multiple Model Selection: A New Information-Theoretic Approach............cccceeevvviiiiieiiiinnnn. 10

1.4 MUIti-STrategy MOUEIS. ..o e 11..

14.1 Applications of Multi-strategy Learning in Probabilistic Networks..............cccccvviiiiiiiiiiinnnnns 11
1.4.2 Hybrid, Mixture, and Ensemble MOElS........ ..o 12
1.4.3 Data Fusion in Multi-strategy MOGEIS........cccoiiiiiiiiiiii e 12

15 Temporal ProbabiliStic NETWOIKS.........ceviiiiiiii e 14
151 Artificial Neural NETWOIKSiii e 14......
1.5.2 Bayesian Networks and Other Graphical DecisSion MOdelS.............cooeoiiiiiiiiiiiiiiii e 14
1.5.3 Temporal Probabilistic Networks: Learning and Pattern Representationccc.evvvvvvnnnnn. 14

2. ATTRIBUTE-DRIVEN PROBLEM DECOMPOSITION FOR COMPOSITE

LEARNING ..o ettt e e e e e e e e 16
2.1 Overview of Attribute-Driven DeCOMPOSITIONcoiiiiiiiiiiiii e 17
21.1 Subset Selection and PartitionNiNg..........ooii oo 17
2.1.2 Intermediate Concepts and Attribute-Driven DECOMPOSILIONuuuiiiiiieeeiiiiiiiiiiiiiiii 18
2.1.3 Role of Attribute Partitioning in Model SEleCtioN..............uuuuiiiiiiiiie e 19
2.2 Decomposition Of LEArning TASKSuuuuuriuiii et eeeeees 20
221 Decomposition by Attribute Partitioning versus Subset Selection.................veeiiiiiiiiiiieeeeeenn, 21
2211 State SPACE FOIMUIATIONuvtiiie e 22
2212 Partition SEAICHoii i 24......
2.2.2 Selective Versus Constructive Induction for Problem Decomposition..............ccoeeevveieiiiennnnns 26
2.2.3 Role of Attribute Extraction in Time SeriesS Learning..........ouueeeeeiiiiiiimiiiiiiiiaseie e eeeeeenennns 27
2.3 Formation of Intermediate CONCEPLS.u.. et e e e e e e eeenaaes 27
2.3.1 Role of Attribute Grouping in Intermediate Concept FOrmationccooveviiiiiiieiiiiiiinneeeeans 27
2.3.2 Related Research on Intermediate Concept FOrMation.............ouvuvuiiiiiiiniiieeeeieeeieeei 28
2.3.3 Problem Definition for Learning SUBLASKSuuuuiiiiii e 28
2.4 Model Selection with Attribute Subsets and PartitionS................ooeeiiiiiiie e 29
24.1 Single versus Multiple Model SEIECTIONcoiiiiiiiiiii e 29
24.2 Role of Problem Decomposition in Model SeleCtion ... 29
2.4.3 Metrics and Attribute EVAIUALIONcooiiiiiiiiiii e 30

Vi

2.5 Application to COMPOSItE LEAMNMING......ccciiiiiiiiiiiiie et 31

251 Attribute-Driven Methods for COmMPOSIte LEAININGuuuiiiiie e 31
252 Integration of Attribute-Driven Decomposition with Learning Componentscc.cc..... 31
2.5.3 Data Fusion and Attribute Partitioning............ccccciiiiiiiiiiiii 33
3. MODEL SELECTION AND COMPOSITE LEARNINGccooiiiiiiieieeee, 34
3.1 Overview of Model Selection for CompOoSIte LEArning.........coouvvviimriiimmiiineeiae e eeeeeeeeeeeeiiiinnns 34
3.1.1 Hybrid Learning Algorithms and Model Selection ..o 35
3.1.1.1 Rationale for Coarse-Grained Model SeleCtion.............oooviiiiiiiiiiiiiiii e 35
3.1.1.2 Model Selection versus Model Adaptationoooevuuiiiiiiiiii e 36
3.1.2 Composites: A FOrMal MOEL...........uuiiiiii et 37
3.1.3 SYNESIS Of COMPOSITES......eeiiiiiiiieeie e 39........
3.2 Quantitative Theory of Metric-Based Composite Learning.............uevveeeeiiiiiieeeeieieeeeiiiiiinnnnn 40
3.2.1 Metric-Based MOdel SEIECTION..........ooiiiiiiiiiii e 40
3.2.2 Model Selection for Heterogeneous TiME SEIHEScoii i 42
3.2.3 Selecting From a Collection of Learning COMPONENTS..........uiiiiiieeeiiiiiiiiiiiiiiiiee e eeeeenens 45
3.3 Learning ArchiteCtures for TiME SEIESuuuuiiiiiiiiiii et 47
331 Architectural Components: Time SerieS MOUEIS...........uuuuiiiiiiiiiiiiii e 47
3.3.2 Applicable MethodSvvuiiiii e AL
3.3.3 Metrics for SeleCting ArChItECIUIES.........oii i 48
3.4 Learning MeTNOUSooiiiiiiiiiii et 49..
3.4.1 Mixture Models and AlgorithmiC COMPONENTS.........uuuuiiiiiee e 50
3.4.2 Combining Architectures wWith MethodS..........coooiiiiiiiiii e 52
3.4.3 Metrics for SeleCting METNOUSuii e 53
3.5 Theory and Practice of COMpPOSIte LEAIrNING.........uuuuuuuiiiii et 54
3.5.1 Properties of COMPOSItE LEAIMNING.t 54
3.5.2 Calibration of MetricsS FrOmM COMPOIa.......ccuiiiiiiiiiiiiiiiie ettt et 54
3.5.3 Normalization and Application Of MEIICSooviiiiiiiiiiii e 55

4. HIERARCHICAL MIXTURES AND SUPERVISED INDUCTIVE LEARNING

.. 56.

4.1 Data Fusion and Probabilistic Network COmMPOSItES...........cvvviiiiiiiiiiiiiiie e 57
411 Application of Hierarchical Mixture Models to Data FUSION..............coovviiiiiiiiiiiiiiieeeeeee 57
4.1.2 Combining Classifiers for Decomposable Time SerieSuuuuiiiiiiiiieeiiei e 60

4.2 Composite Learning with Hierarchical Mixtures of Experts (HME)ouvviiiiiiiiiiineeenn, 61
421 Adaptation of HME to Multi-Strategy Learning...........oooeeeiiiiiiiiiiiiiiiee e 62
4.2.2 Learning Procedures for Multi-strategy HMEoouiiiiiiiii e 64

4.3 Composite Learning with Specialist-Moderator (SM) Networks...........cc.cevieviiiiiiineeeeiiinnnnn. 64
4.3.1 Adaptation of SM Networks to Multi-strategy LEarning...........ccooevvvrerriiiiiinniinee e 64
4.3.2 Learning Procedures for Multi-strategy SM NetWOrkS...........ccooiiiiiiiiiiiiiiiieeeeeeeeeeein 68

4.4 Learning SYSIEM INTEOIAtIONuutiiii ittt e e 69
441 Interaction among Subproblems in Data FUSIONiiiiiiiiiiiiee e 69
4.4.2 Predicting Integrated PerformanCe...........ouuiiiiiiiii e 69

4.5 Properties of Hierarchical Mixture MOGEIS............cooiiiiiiiiiiii e 70

viii

451 NETWOIK COMPIEXILY ...ttt ettt e e e e aeas 70.....

4.5.2 VarianCe REAUCTIONuiiiis ettt e 70....
5. EXPERIMENTAL EVALUATION AND RESULTS.....cciiiiii e, 72
5.1 Hierarchical Mixtures and Decomposition of Learning Tasksccoovvviiviiiiiiiiiiiiinnnnn, 72
5.1.1 Proof-of-Concept: Multiple Models for Heterogeneous Time Series.........cccoovvvvveiiiieeeeeiiinnnnn. 72
5.1.2 Simulated and Actual Model INTEGrationueeiiiii e 75
5.1.3 Hierarchical MixXtures for SENSOr FUSIONuuuuiiiii et 77
52 Metric-Based Model SEIECHONcooiiiiiiiiii e 80
5.2.1 Selecting Learning ArChItECIUMNESuuuriii e 80
5.2.2 Selecting MixXtUre MOEIS.uuueiie e 8l
5.3 PArtitioN SEAICKuii et 82
53.1 Improvements in ClasSifiCatioN ACCUIACYoiiiiieeeeeiiiiiiiiiie e 82
53.2 Improvements in Learning EffiCIENCYoviiiiiiii e 84
54 Integrated Learning SyStem: COMPAIISONS.........oiiiiieeeiiiiieiiitiiii e e et e e 85
54.1 OMNEE INAUCETS ...ttt e e e et e 85.
54.2 Non-Modular ProbabiliStic NEtWOIKSccciiiiiiiiiiiiiiii e 87
5.4.3 Knowledge Based DECOMPOSITIONuuuuuiiiieeeiiiiiii ittt e e e e e e e eeeeaaaes 90
6. ANALYSIS AND CONCLUSIONS ..o eae e 91
6.1 Interpretation of EMPIriCal RESUILS..........ooiiiiiiiiiiii e 91
6.1.1 SCIENtific SIGNITICANCE.........ueii et e al..
6.1.2 = (6 (=T PP PSP 93
6.1.3 Representativeness Of TESE BEUSccoiiiiiiiiii e 94
6.2 Synopsis Of NOVEI CONTIIDULIONS ...t 95
6.2.1 Advances in QUANItAtIVE TREOIY........ccoiiiiiiiiiii e 95
6.2.2 Summary of Ramifications and SignifiCanCe...........ooiiiiiiiiiiiii e 97
6.3 FULUNE WOTK ...ttt 100
6.3.1 Improving Performance in Test Bed DOMAINS..........oouuiiiiiiiiiiiiee e 100
6.3.2 Extended APPIICALIONSuuiiiiie e 100......
6.3.3 OtNEI DOMAINS ...ttt e e e et et e e s e bbb emmman 102..
A. COMBINATORIAL ANALYSES . o 103
1. (1011 g o) i = = T (o I (522 RSP 103
2. Theoretical Speedup due to Prescriptive METIICSooeeiiiiiiiiiiiiiiiie e 105
3. FaCtOrization PrOPEITIEScoiiiiiiiieiie e e ettt e e e 106

B. IMPLEMENTATION OF LEARNING ARCHITECTURES AND METHODS
110

1. Time Series Learning ArChitECIUIES.oiiiiiiiiiiie e 110
11 Artificial NeUral NEIWOIKSii e 110

1.11 SiImple RECUITENT NEIWOIKScooiiiiiiiiiiie e 111

1.1.2 Time-Delay Neural NEtWOIKSooi i 112
1.1.3 GAMMEA NEIWOIKS. ... 3o 11
1.2 BayeSian NEIWOIKS.coiiiiiiiiiiiiit ettt e e e e e e e e e e 113.....
1.2.1 TeMPOTral NATVE BAYESoeveiiiiiiiii ettt e e 113
1.2.2 Hidden MarkOV MOGEISooi et e e 114
2. Training AlGOTTNIMS ... ettt e e e e e e 114
2.1 Gradient OPLMIZATIONccoiiiiiiiiiiii e e 114.......
2.2 Expectation-Maximization (EM)oeuiuiii e 114
2.3 Markov chain Monte Carlo (MCMC) MethOUSuuvuiiiiiieeiiiiiiieii e 115
3. MIXEUNE IMIOEIS. ...ttt e e ettt e e mmmmmmnes 115
3.1 SpPeCialiSt-MOAErator (SM)oci i 115
3.2 Hierarchical Mixtures of EXperts (HME)cooiiiiiiiiiii e 116
O |V I 0 117
1. Architectural: Predicting Performance of Learning Models............coviiiiiiiiiiiiiieeee 117
11 Temporal ANNS: Determining the Memory FOIML........oooviiiiiiiiiiie e 117
1.11 KerNel FUNCHONS ...t 117......
1.1.2 CONAILIONAI ENFOPY ..ttt 19....... 1
1.2 Temporal Naive Bayes: Relevance-Based Evaluation Metrics............cccccooeeeiiiiiiiiiiinns 120
1.3 Hidden Markov Models: Test-Set PerpleXity............couii i 121
2. Distributional: Predicting Performance of Learning Methods................ceeeiiiiiiiiiiiiiiiiiiinns 122
2.1 Type of HierarChiCal MIXIUIEccoiiiiiiiie e 122
21.1 FaCLONZAtiON SCOME......cciiiiiiiiiiitt et 122......
21.2 Modular Mutual INformation SCOT..........oiiiiieiiiiiiiiei e 123
2.2 ALGOTTENIMS ... e 126
221 Value Of MISSING DATA........coviiiiiiiii e s 126
222 SAMPIE COMPIEXITY . T 12
D. EXPERIMENTAL METHODOLOGY ...couiiiiiiicie e 128
1. EXPeriments USING METICScooiiiiiiiiiii ettt e e e e e e eeeenne 128.....
1.1 Techniques and Lessons Learned from Heterogeneous File Compressioncceeeeeeeene. 128
1.2 Adaptation to Learning from Heterogeneous TiMe SEriES.........ooiii i 128
2. Corpora for EXPerimENTatiON.ccouiiiiiiiiiiiiie et 9...12
2.1 DESITEA PrOPEITIES ..ttt ettt e 129.....
211 Heterogeneity Of TIME SEIIES......oov ittt e e eeeeees 130
2.1.2 Decomposability Of ProDIEMS ... 131
2.2 SYNTNESIS OF COMPOTA ...ttt 131.......
2.3 EXperimental USE OF COMPOI@iii ettt e e 132
231 Fitting Normalization FUNCLIONSooiiiiiiiiiiii e 132
2.3.2 Testing Metrics and Learning COMPONENTSccooiiiiiiiiiiiiii e 132
2.3.3 Testing Partition SEAICHooii i 2. 13
et o o N R 134

1. Introduction

The purpose of this research is to improve existing methods for inductive concept learning
from time series. A time series is, colloquially, any data set whose points are indexed by time
and organized in nondecreasing ordefTime series learning refers to a variety of learning
problems, including prediction of the next point in a sequencecamdept learningvhere each
data vector, or point, is an exemplar and the task is to classify the next (“test”) exemplar given
previous exemplars as training data. In traditional concept learning formulations, the order of
presentation of exemplars is relevant only to the learning algorithm (if at all), not to the classifier
(rule or other decision structure) that is produced. In time series classification (concept learning),
however, it is generally relevant to both. Thus, the definition of concept learning is extended to
time series by taking into account all previously observed data. Furthermore, class membership
(i.e., the learning target) may be binary, general discrete-valued (or nominal), or continuous-
valued. This dissertation therefore focusesimtrete classificatiomver discrete time series.

This chapter describes thgapperapproach to inductive learning and how it has previously
been used to enhance the performance (classification accuracy) of supervised learning systems.
In this dissertation, | show how wrappers fattribute subset selectioran also be incorporated
into unsupervised learning specifically, constructive inductior for redefinition of learning
problems. This approach is also referred tochange of representatioand optimization of
inductive bias | adapt the constructive induction framework to decomposition of learning tasks
by substituting attributgoartitioning for attribute subset selection. This leads to definition of
multiple subproblems instead of a single reformulated problem. This affords the opportunity to
apply multi-strategy learning; for time series, the choice of learning technique is based on the
type of temporal, stochastic patterns embedded in the data. | develop a metric-based technique
for identifying the closest type of pattern from among known, characteristic types. This allows
each subproblem to be mapped to the most appropriate model (i.e., learning architecture), and
also allows a (hierarchical) mixture model and training algorithm to be automatically selected for
the entire decomposed problem. The benefit to supervised learning is reduced variance through
multiple models (which | will refer to agompositesand reduced model complexity through
problem decomposition and change of representation.

! More rigorously, we may require that the time index be nonnegative and that certain conventions be
consistent for a training set and its continuation. Typical choices, regarding the representation of time
series specifically, include discrete versus continuous time, synchronous versus asynchronous data vectors
and variables (within each data vector), etc. [BJR94, Ch96].

1.1 Spatiotemporal Sequence Learning with Probabilistic Networks

A spatiotemporalsequence is a data set whose points are ordered by location and time.
Spatiotemporal sequences arise in analytical applications such as time series prediction and
monitoring [GW94, Ne96], sensor integration [SM93, Se98], and multimodal human-computer
intelligent interaction. Learning to classify time series is an important chtyati intelligent
systems for such applications. Many problems and types of knowledge in intelligent reasoning
with time series, such as diagnostic monitoring, prediction (or forecasting), and control

automation can be represented as classification.

This section presents existing methods for concept learning from time series. These include
local optimization methods such as delta rule learningb@ckpropagationof error) [MR86,
Ha94] and expectation-maximization (EM) [DLR77], as well as global optimization methods
such as Markov chain Monte Carlo estimation [Ne96]. | begin by outlining the general
framework of time series learning using probabilistic networks. | then discuss how certain time
series learning problems can be processed using attribute-driven methods to obtain more tractable
subproblems, to boost classification accuracy, and to facilitate multi-strategy supervised learing.
This leads to a system design that integrates unsupervised learning and model selection to map
each subproblem to the most appropriate configuration of probabilistic network. In designing a
systematic decomposition and metric-based model selection system, | address a number of
shortcomings of existing time series learning methods with respdwttEyogeneousme series.
In Section 1.1.4, | give a precise definition of heterogeneous time series and give examples of
real-world analytical problems where they arise. Finally, | discuss the role of hierarohidate
modelsin integrated, multi-strategy learning systems, especially their benefits for time series
learning using multiple probabilistic networks.

1.1.1 Statistical and Bayesian Approaches to Time Series Learning

Time series occur in many varieties. Some are periodic; some contain values that are linear
combinations of preceding ones; some observe a finite limit on the duration of values (i.e., the
number of consecutive data points with the same value for a particular variable); and some
observe attenuated growth and decay of values. Taedredded pattern typeescribe the way
that values of a time series evolve as a function of time, and are sometimes referreaemarsy
forms[Mo94]. A memory form can be characterized in terms of a hypotheficadessTK84]
that generates patterns within the observed data (hence theraosdded A memory form can
be represented using various models. Examples include: generalized linear models in the case of

periodicity [MN83]; moving average models in the case of linear combinations [M094, MMR97],
finite state models and grammars in the case of finite-duration patterns [Le89, Ra90], and
exponential trace models in the case of attenuated growth and decay [M094, RK96, MMR97].

All of the above memaory forms can exhibit noise, or uncertainty. The noisy pattern generator
can be characterized as a stochastic process. In certain cases, the probability distributions that
describe this process have specific structure. This allows information abut the stochastic
component of a time series to be encoded as model parameters. Examples include graphical state
transition models with distribution over transitions (a probabilistic typ®obre modebr Mealy
mode| also known afkeber grammar$RK96]), or similar state models with distributions over
transitions and outputs (also knownladden Markov models or HMM&a90]).

This dissertation focuses on graphical models of probability, specificpligbabilistic
networks or connectionist networksas the models (hypothesis languages) used in inductive
concept learning. These include simple recurrent networks [EI90, Ha94, M094, Ha95, PL98],
HMMs [Ra90, Le89], and temporal Bayesian networks [Pe88, He96]. Network architectures are
further discussed in Section 1.2, Chapter 2, and Appendix B.1. The structure of a stochastic
process can be learned using local and global optimization methods that fit the model parameters.
For example, gradient learning can be applied to fit generalized linear models and multilayer
perceptrons (also called feedforward artificial neural networks) [MR86], as well as other
probabilistic networks, such as Bayesian networks and HMMs [BM94, RNR&gpectation-
Maximization(EM) [DLR77, BM94] is another local optimization algorithm that can be used to
estimate parameters in graphical models; it has the added capability of being able to estimate
missing data. Finally, Bayesian methods for global optimization includ&tdr&ov chain Monte
Carlo family [Ne93, Gi96], which performs integration by random sampling from the conditional
distribution of models given observed data [KGV83, AHS85, Ne92]. Appendix B.2 gives in-
depth details of the time series learning algorithms applied in this dissertation.

1.1.2 Hierarchical Decomposition of Learning Problems

A key research issue addressed in this dissertatiohdasge of representatidior time series
learning. Even more than in general inductive learning, change of representation is ubiquitous in
analysis of spatiotemporal sequences. It occurs due to signal processing, multimodal integration
of sensors and data sources, differences in temporal and spatial scales, geographic projections and
subdivision, and operations for dealing with missing data over space and time (interpolation,
downsampling, and Bayesian estimation). | investigate a particularly important form of change

of representation for real-world time serigmrtitioning of input. In Chapter 2, | will describe
attribute-driven methods (subset selection and partitioning) for problem reformulation, and
explain how these methods correspond to teature construction and extractiophase of
constructive induction [Ma89, RS90, Gu91, Do96]. Partitioning the input of a time series
learning problem into subsets of attributes is the first step of a problem decomposition process
that enables numerous opportunities for improved supervised learning. The benefits are
discussed throughout Chapters 2, 3, and 4 and empirically demonstrated in Chapter 5. In brief,
decomposing a learning problem by attribute partitioning results in the formation of a hierarchy
of problem definitions that facilitates model selection and data fusion.

1.1.3 Constructive Induction and Model Selection: State of the Field

The decomposition process interacts with model selection from a collection of probabilistic
models such as temporal artificial neural networks and temporal Bayesian networks.
Traditionally, constructive induction has been directed toward such conceriypaghesis
preferencgMi83, Ma89, RS90, D096, 1096, Pe97, Vi9g], i.e., the formulation of new descriptors
for concept classes that permit more tractable and accurate supervised learning. New descriptors
are formed based upon the initial problem specification ¢iteeind attributesor instance space
[RS90, Mi97]), the empirical characteristics of the training data, and prior knowledge about the
test data (thelesired inference spad®B98]). Similarly, decomposition of learning problems
has dealt with focusing different induction algorithms (or components ohigure model
[RCK89, JJB91, JINH91, JJ93, JJ94]) on different parts of the hypothesis space, to more easily
describe the concept classes. The difference between most constructive induction and
decomposition algorithms is that the former produces a single reformulated learning problem,
while the latter produces several. In Chapter 2, | show how attribute partitioning meets objectives
of both constructive induction and problem decomposition.

Constructive induction can be divided into two phases: reformulation of input and internal
representationddature constructiofiDo96] andfeature extractiorjKJ97]) and reformulation of
the hypothesis language, or target concepister definition[D096]). Feature construction and
extraction apply operators to synthesize neanfpound attributes from the originalgfound
attributes in the input specification. By contrast, the methodtofbute subset selectigikio2,
Ca93, Ko94, Ko95, KJ97] identifies those inputs upon which to focus an induction algorithm’s
attention. It does not, however, inherently perform any synthesis of new hypothesis descriptors.
Subset selection is tied to the problem afitomatic relevance determinatiaARD), which

estimates the capability of an attribute to distinguish the output class in the context of other

attributes [He91, Ne96]. In Chapter 2, | explain how attribute subset selection and partitioning

can augment, or be substituted, for feature construction in a constructive induction system. The
function of this modified system depends on whether subset selection or partitioning is used; in
this dissertation, | focus on partitioning, whose purpose is to produce multiple subproblem

definitions. An evaluation function is required to ensure that these definitions constitute a good

decompositiorof a time series learning problem.

One of the main novel contributions of this dissertation is an elucidation of the relationship
among constructive induction (by attribute partitioning), mixture models, rmadel selection
Model selection is the problem of identifying a hypothesis language that is appropriate to the
characteristics of a training data set [GBD92, Hj94, Sc97]. Chapter 3 focuses on how model
selection can be improved, given a good decomposition of a task. Each model in my learning
system is associated with a characteristic pattern (memory form) and identifiable types of prior ad
conditional probability distributions. This association allows the most appropriate learning
architecture, mixture model, and training algorithm to be applied for each subset of training data
generated by constructive induction. The type of model selection | apptpasse-grained
(situated at the level of learning architecturée., thetype of probabilistic networko use) and
guantitative (metric-based- i.e., based upon a measure of expected performance). Equally
important, it is customized for multi-strategy learning where every choice of “strategy” is a
probabilistic network for time series learning. This common trait simplifies the model selection
framework and makes the system more uniform, but does not restrict its applicability in practice

1.1.4 Heterogeneous Time Series, Decomposable Problems, and Data Fusion

By mapping subproblems to customized configurations of probabilistic networks for time
series learning, a hierarchical, supervised learning system with enhanced generalization quality
can be automatically built. This dissertation addresses data fusion [SM93] using different types
of hierarchical mixture models. Data fusion is of particular importance to learning from

heterogeneousme series, which | define here, by way of an analogy.

A heterogeneous filés any file containing multiple types of data [HZ95]. In operating
systems applications (data compression, information retrieval, Internet communications), this is
well defined: audio, text, graphics, video (or, more specifically, formats thereof) are file types. A
heterogeneous data sistany data set containing multiple types of data. Because “types of data”

is a largely unrestricted description, this definition is much more nebulous than that for files
that is, until the learning environment (sources of data, preprocessing element, knowledge base,
and performance element) is defined [CF82, Mi97]. Section 1.5 and Chapter 2 present this
definition.

A heterogeneous time serigsa data set containing multiple types of temporal data. There
are several ways to decompose temporal data: by the location of the source (spatiotemporal
maps); by granularity (i.e., frequency) of the sample; or by prior information about the source
(e.g., an organizational specification for multiple sensors). This dissertation considers each of
these, but focuses on the third aspect of decomposition. The goal of decomposition is to find a
partitioning of the training data that results in the highest prediction accuracy on test data. To
begin formalizing this notion, | begin by definindecomposabilityin terms of its criteria as
addressed in this research:

Definition. Given an attribute-based mechanism for partitioning of time series data sets, an
assortment of learning models, a quantitative model selection mechanism, and a data fusion
mechanism, a particular time series learning probledeiomposablé it admits separation into
subproblems of lower complexity based on these mechanisms.

The attribute-based mechanism for partitioning is the topic of Chapter 2. The assortment of
learning models (which comprises the learning architecture and the learning method) and the
model selection mechanism are both formalized through the definition and explanation of
composite learningn Chapter 3. The data fusion part of this definition is formalized in Chapter
4. Finally, analysis of overall network complexity is presented in Chapter 5.

1.1.5 System Overview

Subproblem
Attribute Definition Partition Evaluator Model
Partitioning Selection
Learning
> Method

> Learning Architecture

Multiattribute
Time Series

Overall
Prediction

Learning
Techniques

Figure 1. Overview of the integrated, multi-strategy learning system for time series.

Figure 1 depicts a learning system for decomposable, multi-attribute time series. The central

elements of this system are:

1. A systematic mechanism for generating ame#laluating candidate subproblem
definitions in terms ofattribute partitioning .2

2. A metric-baseanodel selectioncomponent that maps subproblem definitions to learning
techniques.

3. Adata fusion mechanism for integration of multiple models.

Chapter 3 presentSelect-Nef a high-level algorithm for building a completearning
method specification ompositgand training subnetworks as part of a system for multi-strategy
learning. This system incorporates attribute partitioning into constructive induction to obtain
multiple problem definitions (decomposition of learning tasks); brings together constructive
induction and mixture modeling to achieve systematic definition of learning techniques; and
integrates both with metric-based model selectiosgarch for efficient hypothesis preferences

2 As | explain in Chapter 2, this may be a naive (exhaustive) enumeration mechanism, but is more
realistically implemented assiate space search

1.2 Problem Redefinition for Concept Learning from Time Series

This section briefly surveys existing methods for problem reformulation, their shortcomings
and assumptions, and potential application to time series learning.

1.2.1 Constructive Induction: Adaptation of Attribute-Based Methods

In probabilistic network learning, constructive induction methods tend to focus on literal
cluster definition{D096] rather than a systematized program of feature construction or extraction
and cluster definition. Cluster definition techniques are numerous, and include self-organizing
maps and competitive clustering (aka vector quantization) [Ha94, Wa85]. The approach | report
in Chapter 2 follows a regime of unsupervised inductive learning that is conventional in the
practice of symbolic machine learning [Mi83], but has been adapted hersefomumerical
learning (sometimes referred to sisbsymboliz The attribute-driven methods that | incorporate
into an unsupervised learning framework perform what Michalski categorizes as both
constructiveandselectivanduction [Mi83].

1.2.2 Change of Representation in Time Series

Many previous theoretical studies have ascertained a need for change of representation in
inductive learning [Be90, RS90, RR93, 1096, Mi97]. Systematic search for a beneficial change of
representation amounts to a search for inductive bias [Mi80, Be90]. Recent work on constructive
induction includes knowledge-guided methods [Do096], relational projections [Pe97],
decomposable models [Vi98], explicit search for change of representation to boost supervised
learning performance [1096], and other algorithms for systematic optimization of hypothesis
representation [Ha89, WM94, Mi97]. A common theme of this work, and of the expanding body
of research on attribute subset selection [Ki92, Ca93, Ko94, Ko095], is that the hypothesis
language in a supervised learning problem may be cast as a graupatiie parametersThis is
the design philosophy behind attribute-based problem decomposition, described in Chapter 2.

1.2.3 Control of Inductive Bias and Relevance Determination

Subset selection is tied to the problemaoftomatic relevance determinatigARD), a process
that, informally, is designed to assign the proper weight to attributes based upon their importance.

This is measured as the discriminatory capability of an attribute, given other attributes that may
be included. Formal Bayesian and syntactic characterizations of relevance can be found in the
work of Heckerman [He91], Neal [Ne96], and Kohavi and John [KJ97]. The significance of
attribute partitioning to ARD is that partitioning extends the notion that relevance is a joint
property of a group of attributes. It applies criteria similar to those used to “shrink” a set of
attributes down to a minimal set of relevant ones. These criteria treat each separate subproblem
as a candidate subset of attributes, but account for the imminent use of this subset for a newly
defined target concept (found through cluster definition) and within a larger context (the mixture
model for the entire attribute partition).

1.3 Model Selection for Concept Learning from Time Series

This section presents a synopsis of the model selection concepts that are introduced or
investigated in this dissertation, and gives a map to the sections where they are explained and
evaluated.

1.3.1 Model Selection in Probabilistic Networks

A central innovation of this dissertation is the development of a system for specifying the
learning technique to use for each component of a time series learning problem. While the
general methodology of model selection is not new [St77], nor is its use in technique selection for
inductive learning [Sc97, EVA98], its application to time series through the explicit
characterization of memory forms is a novel contribution of this research. | will refer to the
specification of learning techniques for each component of a partitioned concept learning problem
as acomposite(specifically, probabilistic network compositefor the kind of specifications
generated in this particular learning system) will also refer to the process of training
probabilistic networks for eachubproblem and for a hierarchical mixture model — according to
this specification — asomposite learning

Each model in my learning system is associated with a characteristic pattern (memory form)
and identifiable type of probability distribution over the training data. The former is a high-level
descriptor of the conditional distribution of model parametéos a particular model
configuration (the architecture, connectivity, and sizgyen the observed data. That is, certain
entire families of temporal probabilistic networks are good or bad for a particular data set; the

% Because this dissertation deals with constructive induction baseattobute partitioning it will not

degree of match between the memory form and this family can be estimated by a metric. This
metric is a predictor of performance by members of this family, if one is chosen as the model type
for a subset of the data. The latter describes the estimated conditional distribution of mixture
model parameter$or a particular type of mixturegiven the data, as well as estimated priors for

a particular model configuration.

1.3.2 Metric-Based Methods

Model selection has been studied in the statistical inference literature for many years [St77,
Hj94], but has been addressed systematically in machine learning only recently [GBD92, Hj94].
Even more recent is the advent of metric-based methods [Sc97] for model selection. The purpose
of metric-based methods in this research is to counteract the instability of certain configurations
of probabilistic networks that make it difficult to conclusively compare the performance of two
candidate configurations. Although statistical evaluation and validation systems, sDEL¥&
[RNH+96], have been developed for just this purpose, tracking the performance of a learning
system across different samples remains an elusive task [Gr92, Ko95, KSD96]. The problems
faced by researchers trying to compare network performance are aggravated when the data comes
from a time series and the networks being evaluated belong to a hierarchical mixture model. Even
if it were feasible to track performance on continuations of the time series [GW94, M094],
subject to the dynamics of the learning system [JJ94], it would introduce another level of
complication to consider all the different combinations of learning architectw#sn the
mixture model. Yet the comparative results on these combination are precisely what is needed to
properly evaluate candidate partitions and architectures given an already-selected mixture model
and training algorithm. This is the motivation for using metrics for estimating expected
performance of a learning technique, instead of the more orthodox method of gathering
descriptive statisticeon network performance using every combination. This design philosophy
is further explained in Chapter 3.

1.3.3 Multiple Model Selection: A New Information-Theoretic Approach
Having postulated a rationale for metric-based model selection over multiple subproblems, it

remains to formulate a hypothetical criterion for expected performance. In fact, this is one of the
important design issues for the research reported in this dissertation. Chapter 3 describes the

make distinctions between feature construction and extraction. The interested reader is referred to [Ki86].

10

organization of mydatabase of learning techniquesd the metrics for selecting particular
learning architecturegnetwork types) andearning method<gtraining algorithms and mixture
models) from it. The principle that motivated the design of metrics for selecting network types is
thatlearning performance for a temporal probabilistic network is correlated with the degree to
which its corresponding memory form occurs in the data

The memory forms that | study in this dissertation include dlugoregressive integrated
moving averag€ARIMA) family [BJR94, Hj94, M094, Ch96, MMR97, PL98], one that includes
the autoregressive moving averagdRMA), autoregressivdAR), and moving averagegMA)
memory forms. These memory forms and their temporal artificial neural network (ANN)
realizations [EI90, DP92, M094, MMR97, PL98] are documented in Chapter 3, where | present a
new approach to quantitative model selection that is based upon information theory [CT91]. In
short, the metrics are designed to measure the decrease in uncertainty regarding predictions on
test cases, or continuations of the time series, after the data set has been transformed according to
a particular time series model. This transformation makes available all of the historical
information that can be represented by the memory type of the candidate model, and the change
in uncertainty is simply measured by the mutual information (i.e., the decrease in entropy due to
conditioning on historical values). A similar approach was used to develop metrics for selecting a
training algorithm and mixture model for a chosen partition of some time series data set, as
documented in Chapter 3.

1.4 Multi-strategy Models

The overall design of the learning system is organized around a process of task
decomposition and recombination. Its desired outcomes are: an improvement in classification
accuracy through the use of multiple, customized modafsd reduced complexity (both
computational, in terms of convergence time, and structural, in terms of network complexity).
This section addresses the definition and utilization of “good” subdivisions of a learning problem

and the recognition of “bad” ones.

1.4.1 Applications of Multi-strategy Learning in Probabilistic Networks

One criterion for the merit of a candidate partition is thality of subproblemi produces.
Because my system is designed for multi-strategy learning [Mi93] using different types of
temporal probabilistic networks [HGL+98, FHI8b], a logical definition of quality is the expected

11

performance ofany applicable network. In terms of model selection, | am interested in the
expected performance of the network adjuddsest for a particular learning subproblem
definition. When metrics are properly calibrated and normalized, this allows the same evaluation
function used in model selection to drive the search for an effective partition. This novel
approach towards characterization of learning techniques in a multi-strategy system provides a
tighter coupling of unsupervised learning and model selection. The focus of multi-strategy
learning in this dissertation is to assemble a database of learning techniques. These should ideally
be: flexible enough to express many of the memory forms that may occur in time series data;
sufficiently rigorous (anchomogeneoydor a coherent choice can be made between competing
techniques; and possesses sufficiently few trainable parameters to make learning tractable.

1.4.2 Hybrid, Mixture, and Ensemble Models

Decomposable models are known by various terms in the machine learning community,
including hybrid [WCB86, DF88, TSN90],mixture [RCK89, JJ94], andensemble[Jo97a]
models. “Hybrid” is usually a colloquial synonym for multi-strategy, oixture modelsand
ensemble learnindgpave more formal definitions. Ensemble learning is defined as a parameter
estimation problem that can be factored into subgroups of parameters, it is a staple of the
literature on variational methods [Jo97a]. Mixture models are the type of integrative learning
models that are investigated in depth in this dissertation. Chapter 4 is devoted to the discussion of
how to adapt hierarchical mixtures to composite learning.

1.4.3 Data Fusion in Multi-strategy Models

Data fusion is one liability of having multiple sensors, subordinate models, or other sources
of data in an intelligent system. In this research, data fusion arises naturally as a requirement due
to problem decomposition. From the outset, one objective of problem decomposition has been to
find a partitioning of the time series into homogeneous subsets. For a multiattribute time series, a
homogeneousubset is a subset of attributes that, taken together, express one temporal pattern. A
common example is a heterogeneous time series that comprises attributes that describe one
temporal pattern (for instance, a moving average) and others that describe an additive noise
model (e.g., Gaussian noise). Many approaches to time series analysis simply make the
assumption that these homogeneous components exist and attempt to extract them [CT91, Ch96].
The goal of attribute partitioning is to find such partitions, on the principle that “piecewise”

12

homogeneous time series are easier to learn when each “piece” is mapped to the most appropriate
model. The problem of fusing (or recombining) these partial models is a primary motivation for
my study of data fusion. A collateral goal of attribute partitioning is to keep the overhead cost of
data fusion (i.e., recombining partial models) low. The experiments reported in this dissertation

demonstrate cases where patrtitions are indeed easier to learn and recombine.

Thus, the desired definition dfeterogeneouts containing more than one data type, Hata
typeis restricted in this research to mean “temporal pattern to be recognized” (comprising the
memory form and other probabilistic characteristics that are enumerated and documented in
Chapter 3 and Appendix C). Thus the definition of heterogeneity abstracts over issues of data
source preprocessingnormalization and organizationgcale(temporal and spatial granularity),
and application (inferential tasks). The desired definition of “decomposable” restricts
heterogeneity to a particul@lecomposition mechanis(ne., for representation and construction
of subtasks, through grouping of input attributes and formation of intermediate concepts),
assortment ofavailable modelsand model selection mechanismThese are qualities of the
learningsystemnot the data set.

This research focuses on decomposable learning problems defined over heterogeneous time
series. It is nevertheless important to be aware of time series that are heterogeneous, but not
decomposable by the available tools. Such problehaildproperly be broken down into more
self-consistent components for the sake of tractability and clarity; but due to lack of available
models, incompleteness of the decomposition mechanism, or inaccuracy in the model selection
mechanism, cannot be broken dobmthe particular learning systemSuch problems are salient
because the topic of this dissertation is not limited to the specific time series models and mixtures
presented here. Specifically, | attempt to address the scalability of the system and its capability to
support additional or alternative learning architectures. This requires consideration of the
conditions under which a heterogeneous time series can be decomposed (i.e., what qualities the
learning system must be endowed with, for ls@rning problento be decomposable).

In time series analysis, the problem of combining multiple models is often driven by the
sources of datahat are being modeled. The purpose of hierarchical organization in the learning
system documented here is to allow identification, from training data, of the best probabilistic
match between patterns detected in the data and a prototype of some known stochastic process.
This is the purpose of metric-based model selection, which — at the level of granularity applied —

13

is usually guided by prior knowledge of the generating processes (cf. [BD87, BJR94, Ch96,
Do96]). Chapter 2 describes a knowledge-free approach for cases where such information is not
available, yet the learning problem is still decomposable.

1.5 Temporal Probabilistic Networks

This section concludes the overview of the system for integrated, multi-strategy learning that
is presented in this dissertation, with a survey of probabilistic network types used and compared.

1.5.1 Artificial Neural Networks

As Section 1.3 and Chapter 3 explain, tiRIMA family of processes is of particular interest
to many current systems for time series learning. | study three variaiRIdfiA-type models
that are represented as temporal artificial neural networks: simple recurrent netdgrk3d87,
EI90, PL98], time-delay neural networks or TDNNKIA) [LWH87], and Gamma networks
(ARMA [DP92]. Algorithms for training these networks include delta rule learning
(backpropagation of error) and temporal variants [RM86, WZ&}{pectation-Maximization
(EM) [DLR77, BM94], and Markov chain Monte CarlofMCMC) methods [KGV83, Ne93,
Ne96]. Finally, Chapter 4 documents how generalized linear models may be adapted to
multilayer perceptrons in ANN-based hierarchical mixture models designed to boost learning

performance.

1.5.2 Bayesian Networks and Other Graphical Decision Models

Bayesian networkare directed graph models of probability that can be adapted to time series
learning [Ra90, HB95]. The types of Bayesian networks and probabilistic state transition models
studied in this dissertation are temporal Naive Bayesian networks (built using Naive Bayes
[KLD96]) and hidden Markov models [Ra90], built using parameter estimation algorithms —
namely, EM [DLR77, BM94] andnaximum likelihood estimatiofMLE) by delta rule [BM94,

Ha94]. Section 3.3 and Appendices B.1 and C.1 document these networks and the metrics used
to select them.

1.5.3 Temporal Probabilistic Networks: Learning and Pattern Representation

Finally, the issue remains of how temporal patterns are represented in probabilistic networks.
This is also the basis of metric design for model selection, at least for learning architectures. This
guestion is answered by using the mathematical characterization of memory forms Keafied

14

functionsin temporal ANN learning) in the definition of metrics. Sections 3.3 and 3.4 and
Appendices B.1 and C.1 discuss this characterization. The representation of temporal patterns is

also empirically important to mixture models, metric normalization and system evaluation. This
is addressed in Chapters 5 and 6.

15

2. Attribute-Driven Problem Decomposition for Composite Learning

Heterogeneous Time Series

(Multiple Sources)

Multiattribute
Time Series

Attribute-Based Data Set Attribute-Based
Reduction: b—— Decomposition:
Subset Selection .. \ Partitioning
e “:
H Selected Attribute
... Altribute Subset Partition
Clustering o —— Clustering
Problem Definition
(with Intermediate
Concepts)

""""" Supervised ™ T T T 7 ";«"’" B SO_ ~ ~ T T TSupervised” T TT T T
Model Selection: Model Selection:
Single-Concept A Multi-Concept

: Model Model
Specification § Specifications

L R - T

Model Training and Data Fusion

Figure 2. Systems for Attribute-Driven Unsupervised Learning and Model Selection

Many techniques have been studied for decomposing learning tasks, to obtain more tractable
subproblems and to apply multiple models for reduced variance. This chapter exattritese-
basedapproaches for problem reformulation, which start with restriction of the set of input
attributes on which the supervised learning algorithms will focus. First, | present a new approach
to problem decomposition that is based on finding a gpadtitioning of input attributes.
Kohavi's research on attribute subset selection, though directed toward a different goal for
problem reformulation, is highly relevant; | explain the differences between these approaches and
how subset selection may be adapted to task decomposition. Second, | compare top-down,
bottom-up, and hybrid approaches for attribute partitioning, and consider the role of partitioning
in feature extraction from heterogeneous time series. Third, | discuss how grouping of input
attributes leads naturally to the problem of formingtermediate conceptsn problem
decomposition, and how this defines different subproblems for which appropriate models must be
selected. Fourth, | survey the relationship between the unsupervised learning methods of this
chapter (attribute-driven decomposition and conceptual clustering) and the model selection and
supervised learning methods of the next. Fifth, | consider the role of attribute-driven problem
decomposition in an integrated learning system with model selection and data fusion.

16

2.1 Overview of Attribute-Driven Decomposition

Figure 2 depicts two alternative systems for attribute-driven reformulation of learning tasks
[Be90, Ki92, Do96]. The left-hand side, shown with dotted lines, is based on the traditional
method of attributesubset selectiofKi92, KR92, K095, KJ97]. The right-hand side, shown with
solid lines, is based on attribuggartitioning, which | have adapted in this dissertation to
decomposition of time series learning tasks. Given a specification for reformulated (reduced or
partitioned) input, new intermediate concepts can be formed by unsupervised learning (e.g.,
conceptual clustering); the newly defined problem or problems can then be mapped to one or
more appropriate hypothesis languages (model specifications). The new models are selected for a
reduced problem or for multiple subproblems obtained by partitioning of attributes; in the latter
case, a data fusion step occurs after individual training of each model.

2.1.1 Subset Selection and Partitioning

Attribute subset selectiois the task of focusing a learning algorithm's attention on some
subset of the given input attributes, while ignoring the rest [KR92, KJ97]. Its purpose is to
discard those attributes that are irrelevant to the learning target, which is the desired concept class
in the case of supervised concept learning. | adapt subset selection to the systematic
decomposition of learning problems over heterogeneous time series. Instead of focusing a single
algorithm on a single subset, the set of all input attributes is partitioned, and a specialized
algorithm is focused oreach subset. This research uses subset partitioningetmmpose
learning task into parts that are individually useful, rather tharethuceattributes to a single
useful group.

Kohavi’'s work on attribute subset selection is highly relevant to this approach [KJ97]. The
important difference is that subset selection is designed for a single-model learning system; it
considers relevance with respect to this model and tests attributes based gipbalariterion:
the overall target and all other candidate attributes. Partitioning, by contrast, is designed for
multiple-model learning. Relevance is a property of a subset and an intermediate target, and
candidate attributes are tested based uporidb& criterion.

Each alternative methodology has its pros and cons, and the difference in their respective
purposes makes them largehycomparable Partitioning methods are intuitively more suitable
for decomposable learning problems, and we can devise a simple experiment to demonstrate this.

Suppose a learning problel) defined over a heterogeneous time series, can be decomposed into

17

two subtasksP; andP,, and a model fusion taskg, and we are able to train modé¥,, M, and

Mg to some desired level of prediction accuracy. Bdbe the subset of original attributes Bf

that are selected by a subset selection algorithm. Consider the space of models b&skdton
belong to a given set of available model types with trainable parameters and hyperparameters,
and whose network complexity and convergence time do not exceed the totsllg fdp andMe.

(I formalize the notion of “available model” by defining @mpositein Chapter 3.) Suppose
further that,with high probability a non-modular model does not belong to this space; that is,
suppose that it is improbable that a non-modular model from our “toolbox” can do the job using
S, as efficiently as the modular modelf subset selection is used only to cho&#®r a single
non-modular model (as it often is), then we can conclude that it is less suitable than partitioning
for problemP. In Chapter 5, | give concrete examples of real and synthetic data sets where this
scenario holds, including cases wheseis the entire set of input attributes (i.e., none are
irrelevant), yet there exists a useful partitioning.

Note, however, thatS can still be used in a modular learning model (and can even be
repartitioned first). Thus, knowing that the problem is decomposable does not conclude anything
about the aptness of subset selection in general. It is still a potentially useful (and sometimes
indispensable) preprocessing step for partitioning, especially considering that under the literal
definition, partitioningneverdiscards attributes.

2.1.2 Intermediate Concepts and Attribute-Driven Decomposition

In both attribute subset selection and partitioning, attributes are grouped into subsets that are
relevant to a particular task: the overall learning task or a subtask. Each subtask for a partitioned
attribute set has its own inputs (the attribute subset) and its intenmediate concept This
intermediate concept can be discovered using unsupervised learning algorithms, kunbass
clustering Other methods, such as competitive clustering or vector quantization (using radial
basis functions [L095, Ha94, Ha95], neural trees [LFL93], and similar models [DH73, RH98]),
principal components analysis [Wa85, Ha94, Ha95], Karhunen-Loéve transforms [Wa85, Ha95],
or factor analysis [Wa85], can also be used.

Attribute partitioning is used to control the formation of intermediate concepts in this system.
Given a restricted view of a learning problem through a subset of its inputs, the identifiable target
concepts may be different from the overall one. In concept learning, for example, there are
typically fewer resolvable classes. A natural way to deal with this simplification of the learning

18

problem is to decrease the number of target classes for the learning subproblem. Specifically,
taking the original concept classes as a baseline and grouping them into equivalence classes
results in a simplification of the problem. Let us refer to the learning subtasks obtained in this
fashion as afactorization [HR98a] of the overall problem (so named because they exploit
factorial structure in the original classification learning problem, and because submodel
complexity is a polynomial factor of the overall model complexity). Attribute subset selection
yields a single, reformulated learning problem (whose intermediate concept is neither necessarily
different from the original concept, nor intended to differ). By contrast, attribute partitioning
yields multiple learningubproblemgwhose intermediate concepts may or may not differ, but are
simpler by design when they do differ).

The goal of this approach is to find a natural and principled way to spkoifyintermediate
concepts should be simpler than the overall concept. In Chapter 3, | present two mixture models,
the Hierarchical Mixture of Experts (HME) of Jordanet al [JJB91, JIJNH91, JJ94], and the
SpecialistModerator (SM) network of Ray and Hsu [RH98, HR98a]. | then explain why this
design choice is a critically important consideration in how a hierarchical learning model is built,
and how it affects the performance of multi-strategy approaches to learning from heterogeneous
time series. In Chapter 4, | discuss how HME and SM networks perform data fusion and how this
process is affected by attribute partitioning. Finally, in Chapters 5 and 6, | closely examine the
effects that attribute partitioning has on learning performance, including its indirect effects
through intermediate concept formation.

2.1.3 Role of Attribute Partitioning in Model Selection

Model selection the process of choosing a hypothesis class that has the appropriate
complexity for the given training data [GBD92, Sc97], is a consequent of attribute-driven
problem decomposition. It is also one of the original directives for performing decomposition
(i.e., to apply the appropriate learning algorithm to each homogeneous subtask). Attribute
partitioning is a determinant of subtasks, because it specifies new (restricted) views of the input
and new target outputs for each model. Thus, it also determines, indirectly, what models are
called for.

There is a two-way interaction between the partitioning and model selection systems.

Feedback from model selection is used in partition evaluation; hence, the systenrapzer,
defined by Kohavi [K095, KJ97] as an integrated systemp@arameter adjustmerih supervised

19

inductive learning that uses feedback from the induction algorithm. This feedback can be defined
in terms of a generic evaluation function over hypotheses generated by the induction algorithm.
Kohavi considers parameter tuning over a number of learning architectures, especially decision
trees, where attribute subsets, splitting criterion, termination condition are examples of
parameters [Ko95]. The primary parameter in this wrapper system is attribute partitioning; a
second, a high-level model descriptor (the architecture and learning method). The feedback
mechanism is similar to that applied by Kohavi [K095], with the additional property that multiple
model types are under consideration (each generating its own hypotheses). Furthermore,
predictiverather thardescriptivestatistics are used to estimate expected model performance: that
is, rather than measuring the actual prediction accuracy for every combination of models, | have
developed evaluation functions for the individual model types and for the overall mixture.
Chapter 3 further explains this design.

Model selection is in turn controlled by the attribute partitioning mechanism. This control
mechanism is simply the problem definition produced by unsupervised learning algorithms. It is
directly useful as an input for performance estimation, which in turn is used to evaluate attribute
partitions (cf. [K0o95, KJ97]). This static evaluation measure can be applied to simply accept or
reject single partitions. A more sophisticated usage that | discuss in Chapter 3 is to apply the
evaluation measure as an inductive bias in a state space search algorithm. This search considers
entire families of attribute partitions simultaneously [Ko95, KJ97], a form of inductive bias (cf.
[Mi80, Mi82]).

2.2 Decomposition of Learning Tasks

Having presented the basic justification and design rationale for attribute partitioning, I now
examine in some greater depth the way in which it can be used to decompose learning tasks
defined onheterogeneoudata sets, especially time series. | first consider the relation between
attribute partitioning and subset selection, focusing on the common assumptions and limitations
of both methods. | then consider alternative attribute-driven methods for decomposition of
supervised inductive learning tasks, such as constructive induction. The purpose of this
discussion is not only to provide further justification for the partitioning approach, but also to
define its scope within the province change-of-representatiosystems [Be90, D096, 1096].
Finally, | assess the pertinence of attribute partitioning to heterogeneous time series, documenting
it with a simple theoretical example that will be further realized in Chapter 5.

20

2.2.1 Decomposition by Attribute Partitioning versus Subset Selection

Practical machine learning algorithms, such as decision surface inducers [Qu85, BFOS84]
and instance-based algorithms [AKA91], degrade in prediction accuracy when many input
attributes are irrelevant to the desired output [KJ97]. Some algorithms such as Naive-Bayes and
multilayer perceptrons (simple feedforward ANNSs) are less sensitive to irrelevant attributes, so
that their prediction accuracy degrades more slowly in proportion to irrelevant attributes [DH73,
BM94]. This tolerance, however, comes with a tradeoff: Naive-Bayes and feedforward ANNs
with gradient learning tend to bmore sensitive to the introduction of relevant beorrelated
attributes [JKP94, KJ97].

The problem ofattribute subset selectiors that of finding a subset of the original input
attributes (features) of a data set, such that an induction algorithm, applied to only the part of the
data set with these attributes, generates a classifier with the highest possible accuracy [KJ97].
Note that attribute subset selection chooses a set of attributes from existing ones in the concept
language, and does not synthesize new ones; there is no feature extraction or construction cf.
[Ki86, RS90, Gu9l, RR93, D096].

The problem of attributpartitioning is that of finding a set of nonoverlapping subsets of the
original input attributes whose union is the original set. Note that this original set may contain
irrelevant attributes; thus, it may be beneficial to apply subset selectiorpespeocessingstep.

As for subset selection, the objective of partitioning is to generate a classifier with higher training
accuracy; but the purpose of the two approaches differs in a key aspect of angealzation
Partitioning assumes that multiple models, possibly of different types, will be available for
supervised learning. It therefore has the subsidiary goals of findirgffanient decomposition,

with components that can beapped to appropriate modetslatively easily. Efficiency means

lower model complexity required to meet a criterion for prediction accuracy; this overall
complexity can often be reduced through task decomposition. Conversely, the achievable
prediction accuracy may be higher given modular and non-modular models of comparable
complexity. [HR98a] documents an attribute-driven algorithm for constructing mixture models in
time series learning, the latter case is demonstrated. Efficiency typically entails decomposing the
problem into well-balanced components (distributing the learning load evenly). Mapping
subproblems to the appropriate models has significant consequences for learning performance
(both prediction accuracy and convergence rate), as | discuss in Chapter 3. An inductive bias can

21

be imposed on partition search (cf. [Be90, Mi80]) in order to take the available models (learning
architectures and methods) into account.

Both subset selection and partitioning produce no complex or compound attributes; in
Michalski’s terminology [Mi83], both can be said to perform pwaective inductiontaken by
themselves. The intermediate concept formation step that follows, however, has elements of
constructive inductionMi83]. Subset selection and partitioning address collateral but
different problems. In this dissertation, partitioning is specifically applieddefinition of new
subproblemsn time series learning. Referencesatitribute-driven reformulatiorare intended to
include subset selection and partitioning, whiggtribute-driven decompositiorrefers to
partitioning and other methods thdividethe attributes rather than choose among them.

As Kohavi and John note [KJ97], subset selection is a practical rather than a theoretical
concern. This is true for attribute partitioning as well. While the optimal Bayesian classifier for a
data set need never be restricted to a subset of attributes, two practical considerations remain.
First, the true target distribution is not known in advance [Ne96]; second, it is intractable to fit or
even to approximate [KJ97]. Modeling this unknown target distribution is an aspect of the classic
bias-variance tradeoff [GBD92], which pits model generality (bias reduction, or “coding more
parameters”) against model accuracy (variance reduction, or “refining parameters”). Intractability
of finding an optimal model, or hypothesis, is a pervasive phenomenon in current inductive
learning architectures such as Bayesian networks [C090], ANNs [BR92], and decision surface
inducers [HR76]. An important ramification of these two practical considerations is that an
“optimal” attribute subset or partitioning should be defined with respect tonth@e learning
techniquein terms of its change of representation, inductive bias, and hypothesis language. This
includes both the learning algorithm (as Kohavi and John specify [KJ97]) and the hypothesis
language, ofearning architecturdi.e., the model parameters and hyperparameters [Ne96]).

2211 State Space Formulation

Figure 3 contains example state space diagrams for attribute subset selection (subset
inclusion) and partitioning. Each state space is a partially ordered set (poset) with an ordering
relation < that is transitive and asymmetric. The ordering relation corresponds to operators that

navigate the search space (i.e., move up or down in the poset, between connected vertices).

22

Subset Inclusion State Space
Poset Relation: Set Inclusion
A <B="Bis a subset of A”

“Up” operator: DELETE
“‘Down” operator: ADD

Set Partition State Space
Poset Relation: Set Partitioning
A <B="A'is a subpartitioning

(refinement) of B”

“Up” operator: MERGE
“Down” operator: SPLIT

Figure 3. The state space diagrams for subset selection and partitioning

The ordering relation for subset selection is set inclusion, the converse of set containment; it
is usually denoted]. The set is ordered in this fashion to conform to the “top down” convention
for state space search (i.e., the vertex 0,0,0,0, denoting the empty set, is the root). Note that this
usage of “top down” refers to theearch not the process of constructing an attribute set, which is
instead best described as “bottom up” (because we start with O attributes and add more). For
attributes, there are bits in each state of the subset inclusion state space, each an indicator of
whether an attribute is present (1) or absent (0) [KJ97]. The relationrresponds to operators
thatadd or deletesingle attributes to or from a candidate subset; these are analogous to stepwise
linear regression operators (forward selection and backward elimination) in statistics [Ri88,
KJ97]. The size of the state space foattributes iSO(2"), so it is impractical to search the space

exhaustively, even for moderate valueshof
The ordering relation for subset partitioning is set partitioning; for exanfpte{{1{2}{3,
41} is a subpartitioning ofB = {{1, 2}{3, 4}}, so we can write A <B. The partitions are coded

according to membership labels: for example, 0,1,1,2 denotes the partition {{1H{2, 3}{4}}.

23

Thus, partitionA in the above example would be coded 0,1,2,2; partiBoi®,0,1,1. The root
denotes {{1, 2, 3, 4}} (i.e., search begins with a default state that denotes one monolithic class,
corresponding to anon-modular model) and the bottom element denotes {{1H{2K3X4}}
(corresponding to aompletely decomposahieodel). Forn attributes, there ane labels in each
state. The relatiox corresponds to operators thsgdlit a single subset anergea pair of subsets

of a candidate partition. The size of the state spacenfattributes isB,, the nth Bell number,
defined as follows

n
B, = > S(n.k)
k=0
if n<kork=0,nz0

S(n,k) = if n=k
(n-L k-1 +kS(n-1k) otherwise

Thus, it is impractical to search the space exhaustively, even for moderate values bé
function B, is «(2") ando(n!), i.e., its asymptotic growth is strictlfaster than that of2" and
strictly slower than that ofn!. It thus results in a highly intractable evaluation problem if all
partitions are considered. For practical illustration, | implemented a simple dynamic
programming algorithm to generate partitions according to the recurrence above [CLR90].
Experiments using aBy = 21147 and,;o = 115975 partitions of data sets with 9 and 10 attributes
respectively (6 of which belonged to a 1-of-C coding of a single measurement) were performed
on a 300-MHz Intel Pentium Il workstation running Windows NT 4.0. The data sets contained
367 discrete exemplars each. Computing the mutual information between each subset of each
partition and the overall (5-valued, 1-of-C-coded) target concept took approximately 5 minutes of
wall clock time for the 9-attribute version and approximately 2.5 hours for the 10-attribute
version. Without customized paging, memory consumption for the 10-attribute experiment
approached the amount of primary memory for the workstation (256 megabytes). Thus, even an
11-attribute partition would be prohibitive to optimize by brute force (i.e., without search).
Chapter 5 and Appendix A document this performance issue.

2.2.1.2 Partition Search

Because naive enumeration of attribute partitions by is highly intractable, a logical next step
is to optimize them by state space search. This entails an evaluation function over states in the

* Sis a recurrence known as the Stirling Triangle of the Second Kind. It counts the number of partitions of
ann-set intok classes [Bo90].

24

partition state space, depicted in Figure Bformed (heuristic-based) search algorithms that
apply to this problem formulation are: hill-climbing (also called greedy search or gradient ascent),
best-first, beam search, and A* [BF81, Wi93, RN95]. The generic template for these informed
search algorithms is as follows:

Search algorithm template

1. Putthe initial state (root vertex) on the OPEN list;
CLOSED list — [, BEST « initial state.
2. while the BEST vertex has changed within the lagierationsdo
3. Letv = arg maxy o canoipates f(W)
(get the state from CANDIDATES with maximaiif).
Remover from OPEN, add/ to CLOSED.
If f(v) -£> f(BEST) then BEST v.
Expandv by applying alldownwardoperators t, yielding a list ofv's children.
For each child not in the CLOSED or OPEN list, evaluate and add to the OPEN list.
Update CANDIDATES.
Return BEST.

© © N o g &

The specific algorithms are differentiated by the definitions of f (step 3) and of
CANDIDATES (step 7):

Algorithm f(w) CANDIDATES

Hill climbing h(w) the list of current children of

Best-first h(w) the entire OPEN list

Beam search h(w) first k elements of the OPEN list sorted jn
decreasing order df

A* h(w) + g(w) | the entire OPEN list

where h(w) is the heuristic evaluation function (the higher, the better) and g(w) is the
cumulative root-to-vertex fitness (the actual total).

Chapter 5 documents the results for partition search using each of these algorithms.

25

2.2.2 Selective Versus Constructive Induction for Problem Decomposition

This section presents a comparative survey of methods for decomposing a data set by
reformulating attributes. So far, this chapter has focused on selective induction methods rather
than constructive induction (theynthesisof new attributes). | now present a brief justification
for this choice.

Constructive induction, the formation of complex or compound attributes, is a method for
transforming low-level attributes into useful ones [Mi83, RS90, RR93, D096]. It divides
inductive learning into two phaseattribute synthesigalso known adeature constructionand
problem redefinitionalso known agluster description[D096]. Attribute synthesis produces a
transformed input by composing attributes using operators (e.g., arithmetic composition). This
constrains the choice of suitable hypothesis languages for describing the target concept, which in
turn defines a new learning problem. Much of computational learning theory is devoted to the
guestion of how to choose one of these hypothesis languages [Ha89, KV91]. The division of
induction into attribute synthesis and problem redefinition is analogous to Figure 2. First, the
input specification is transformed in this case, by applying operators to form new attributes
rather than selecting or partitioning them. The redefinition of the learning problem is
accomplished by forming new concepts, and selecting the appropriate hypothesis language or
languages. These steps are organized into a single abstract phase in the traditional constructive
induction framework [Mi83, Do096]. | pay explicit attention to the boundary between
intermediate concept formation and model selection, because this distinction is important to
decomposition of time series learning problems, and to the modular and hierarchical mixture

approaches | apply in this dissertation.

The objective of attribute synthesis in the constructive induction framework is to combat the
phenomena ofdispersionand blurring [RS90, RR93, D096]. Dispersion is a property of
concepts, wherein exemplars belonging to each class are scattered throughout instan@e space,
the projection thereof under a particular attribute subge890]. Blurring is another property of
concepts, wherein attributes that do not appear individually useful turn out to be jointly useful
[RR93]. Another way to say this is thatlevance is a joint property of attributes, not an
independent on@He91, Ko95, KJ97]. Blurring is a converse property of decomposability by
attributes (wherein attributes that are jointly useful can be separated without loss of coherence); it
is thus a primarilyinter-subset property from the point of view of problem decomposition.
Dispersion is a symptom of attribute subset “insufficiency”, meaning that more knowledge,

26

orderings, or additional attributes are required for coherence; it is thus primarihtrarsubset
property. The reason for concentrating on attribute partitioning instead of attribute synthesis in
this dissertation, therefore, is that partitioning is mdirectly consciou®f the issues of problem
decomposition, redefinition, model selection, and data fusion (the right hand side of Figure 2)
toward which my approach aims.

This concludes my brief justification of partitioning methods in constructive induction. Some
experimental comparisons are documented in Chapter 5.

2.2.3 Role of Attribute Extraction in Time Series Learning

This research focuses on multiattribute time series, especially when they are decomposable
by attribute partitioning. Thus, the data sets that | consider are restricted to multiattribute time
series, where each attribute represents a single channel of information through time (also known
as multichanneltime series). Attribute partitioning as applied to multichannel time series
achieves problem redefinition by grouping attributes together, to produce subsets that we can
think of as “large attributes”. This is especially apropos for multichannel time series because
large attributes (the inputs to learning subproblems) occur naturally based upon the multiple
sources of data, such as sensors. In Chapters 4 and 5, | document several real-world and synthetic
time series that admit this type of decomposition.

The next section discusses how attribute partitioning may be used to drive problem
redefinition, the second phase of constructive induction.

2.3 Formation of Intermediate Concepts

2.3.1 Role of Attribute Grouping in Intermediate Concept Formation

Attribute partitioning produces a reformulation of the input to supervised concept learning.
We can think of this reformulation as probledecompositionfrom the point of view of
multiattribute learning and problerapecializationfrom the point of view of multi-strategy
learning. The result, however, is the same: each subproblem has its input restricted to a subset of
the original attributes. This restriction is the driving force behind intermediate concept formation,
part of the second phase of constructive induction. Intermediate concept formation is also known
as cluster description[D096] when the learning paradigm is single-concept constructive
induction. This dissertation deals with the formation of intermediate concepts in support of a

27

hierarchical, multi-strategy time series learning system. The principle is similar, however, as the
same unsupervised learning methods may be used to re-target the desired outputs whether there is
one set of inputs or several. Thus, attribute partitioning prepares the input; intermediate concept
formation, the output; and the result is a set of redefined learning subproblems for which model

selection and training are made easier.

2.3.2 Related Research on Intermediate Concept Formation

The same techniques used to form new concepts from unlabeled data (“deciding what to
learn”) can be brought to bear in attribute-driven problem decomposition, namely: conceptual
clustering and vector quantization, self-organizing systems, and other concept discovery
algorithms. Conceptual clustering methods are those that group exemplars into conceptually
simple classes, based upon attribute-centered criteria such as syntactic constraints, prior relational
knowledge, and prior taxonomic knowledge [SM86, Mi93]. Other clustering techniques include
competitive clustering or vector quantization methods. A well-known examplengans
clustering, which finds prototypes (cluster centers) through an iterative refinement algorithm
[DH73, Ha94, Ha95]. Competitive clustering using radial-basis functions [Ha94, Ha95], neural
trees [LFL93], and other distance-based models has been studied in the artificial neural networks
and information processing literature [RN95]. Vector quantization, the problem of finding an
efficient intermediate representation (also known ascaglebook for learning (or model
estimation problems in signal processing, has also been heavily researched and is the source of a
number of algorithms that apply to concept formation [DLR77, Le89]. Self-organization is a
process of unsupervised learning whereby significant patterns or features in the input data are
discovered using an adaptive model [RS88, Ko90, Ha95]. Architectures such as self-organizing
feature maps, which relate the topology of input data to its probability distribution, have been
discovered by Kohonen [K090] and investigated by Ritter and Schulten [RS88]. Finally, domain-
specific and architecture-specific algorithms for concept discovery from data, such as hidden-
variable induction algorithms for Bayesian networks [Pe88, LWYB90, CH92], also have the
capability to produce intermediate concepts.

2.3.3 Problem Definition for Learning Subtasks

The formation of intermediate concepts (learning targets, or desired output attributes)
completes a process of subproblem definition as depicted in Figure 2. This is, however, only the
beginning of the overall process of problem decomposition, which comprises problem
redefinition, model selection, and model reintegration (data fusion). What is accomplished by

28

partitioning attributes and defining a new target concept for each subset is the specification of a
self-containedlearning subproblem for which &pecialized modelcan be selected. In
multiattribute learning, “self-contained” means that the attributes are sufficient for a well-defined
intermediate target (i.e., exhibit lodispersionRR93] with respect to that target) and distribute

the learning task evenly (i.e., take advantage of decomposability, resulting in conbloiteédg

[RS90] across attributes Chapters 3, 4, and 5 examine how the quality of this subproblem
definition affects the subsequent model selection, training and integration phases.

2.4 Model Selection with Attribute Subsets and Partitions

Model selectionis the process of finding a hypothesis class, or language, that has the
appropriate complexity for the given training data [GBD92, Sc97]. This section previews the role
of attribute subset selection and partitioning in model selection. It then shows how attribute
partitioning enhances the more interesting aspect of model selection where multiple (not
necessarily identical) models are called for.

2.4.1 Single versus Multiple Model Selection

The model selection problem can be described as optimization of model organization (e.g.,
determining the topology of a Bayesian network or artificial neural network, also known as
structuring [Pe86, CH92]), hyperparameters [Ne96], or parameters [GBD92, Sc97]. In all of
these cases, model selection can be directed towards a single problem definition or towards
multiple subnetworks, groups of hyperparameters, or groups of parameters. Multiple model
selection is more salient to problems decomposed using attribute partitioning, for the obvious
reason that partitions have multiple subsets and thereby induce multiple subproblems. It is also of
greater interest in the context of multi-strategy learning [HGL+98]. In this research, | am
specifically interested in the case where multiple models may be applied, but the learning
architectures and methods (mixture model and individual training algorithms) are not necessarily
identical. This is the case where tllata setis heterogeneous and tlearning problemis
decomposable.

2.4.2 Role of Problem Decomposition in Model Selection

Problem decomposition by attribute-based methods affects model selection in two ways:
directly, via input reformulation, and indirectly, via problem redefinition and reformulation of the
data. The direct relationship between partitioning and multiple model selection (and between

29

subset selection and single model selection) is predicated upon attribute-based model selection
decisions. That is, whatever decisions can be made about the hypothesis language based purely
upon syntactic specification of the input (including which attributes belong to a given subset) are
directly influenced by the partitioning used. The indirect effects can also be based upon syntactic
properties of the subproblems, but only if the reformulated output is taken into account. Note,
however, that this output (the intermediate concept) may be foupadifgly syntacticlustering.

Typically, neither the problem redefinition nor the model selection process is based only
upon syntactic properties; the statistical content of the data thus plays an important role. This
dissertation, being primarily concerned with multiattribute time series data and the decomposition
thereof, thus focuses on the indirect case. For example, attributes can be grouped together such
that eaclprojectionof the data (i.e., the “columns” corresponding to each subset) [Pe97] can be
learned using a particular temporal model such as@oregressiveor moving averagenodel
[Mo94]. In this case, the prediction that a projection “can be learned” using a given model
(hypothesis language) is in the purview of model selection, and certainly requires information
about the reformulated data (namely, how tractable the new subproblem is given a candidate
model). This is the subject of Chapter 3.

2.4.3 Metrics and Attribute Evaluation

In this dissertation, | develop a quantitative methoddoarse-grainednodel selection.
By coarse-grained, | mean determination of very high-level hyperparameters such as the network
architecture, mixture model, and training algorithm. These can be adjusted automatically, but are
traditionally considered beyond the “core” learning system. | argue in Chapter 3 that for
decomposable learning problems, indiscriminate use of “nonparametric’ models such as
feedforward and recurrent artificial neural networks is too unmanageable. That is, leaving the
tasks of problem decomposition, model adaptation (i.e., changing model parameters and
hyperparameters to attain the appropriate internal representation for hypotheses), and model
integration (making coherent sense out of an hybrid [Mi93], mixture [JJ94, Bi95], ensemble
[Jo97a], orcompositemodel) is too much to expect! This is especially true in applications of
time series learning (where my performance element is classification for monitoring and
prediction), because decision surfaces are more sensitive to error when the target concept is a
future event of importance. The alternative | propose and investigate is to assume that there is a
“right tool for each job” in a decomposable learning problem, where “each job” is found by

30

attribute partitioning and the “right tool” is identified by coarse-grained, quantitativengdric-
based model selection.

The interaction between this model selection system and the partitioning algorithm is that
evaluation metrics for models provide feedback for partitiorisgure 1, in Chapter 1, illustrates
this design. Partitioning and model selection operate concurrently, with the partitioning
algorithm producingcandidate partitions(either by naive enumeration or by search). Model
selection evaluates learning architectures with respeeatb subsetf a partition (recall that an
objective of attribute-driven decomposition is to map subproblems to different learning
architectures). It also evaluates learning methods (mixture models and training algoathas)
total function of the partition This second component of the evaluation metric can be fed back to
the partition search algorithm as a heuristic evaluation function. The partitioning algorithm, in
turn, uses this feedback to produce better candidate partitions.

2.5 Application to Composite Learning

2.5.1 Attribute-Driven Methods for Composite Learning

Theraison d'étreof model selection in concept learning is to produce a hypothesis language
specification for supervised learning. When this choice has been committed to the acceptable
partition or partitions, training can proceed independently with the specified model for each
partition. It is the object being specified that | refer to asamposite the complete problem
definition (an attribute partition, mixture model, learning algorithm, and selected architectures for
each subset a temporal, probabilistic subnetwork in each case). Thus, the entire learning system
revolves around attribute partitioning, intermediate concept formation, and multiple model
selection, with each phase driving the subsequent ones and feedback from model selection to
partitioning. A final consideration, which | summarize in Section 2.5.3 and address in depth in
Chapter 4, is how multiple models are recombined to improve prediction accuracy.

2.5.2 Integration of Attribute-Driven Decomposition with Learning Components

To fully understand the interaction between attribute-driven decomposition and multi-strategy
learning with model selection, it is useful to briefly survey some existing research. The relevant
systems are integrative learning systems with attribute evaluation. These inclvdapperand
filter approaches, described by Kohavi [Ko95]. Tattribute filter approach, documented by

31

Kohavi and John [KJ97] and previously investigated by Almuallim and Dietterich [AD91], Kira
and Rendell [KR92], Cardie [Ca93], and Kononenko [K094], is a simple methodology for
attribute subset selection that evaluates attributes outside the context of any induction algorithm.
The effective assumption is that relevance is an entity independent of the hypothesis lahguage
dubious assumption in most cases and highly susceptible to properties such as greediness in
decision surface inducers [KJ97]. While technically, knowledge of the hypothesis language can
be captured by the selection function, this is highly impractical as Kohavi and John document in
their survey of filtering techniques [KJ97]. John, Kohavi, and Pfleger have identified a number

of weaknesses in attribute filtering, and derived several pathological datasets to demonstrate these
weaknesses [JKP94]. | show in Chapters 5 and 6 that such pathologically bad cases constitute a
combinatorially significant proportion of datasets. This is demonstrable whether the data are
generated exhaustively, deterministically according to constraints, or stochastically according to

sampling constraints.

The wrapper approach to attribute subset selection, pioneered by Kohavi [K095], is an
alternative to attribute filtering that takes the induction algorithm into account. | adapt the
generalized wrapper developed by Kohavi and John [KJ97] to attribute partitioning in support of
integrated model selection. This approach is depicted in Figures 22 and 23, in Chapter 6.

The advantages of using wrappers for attribute partitioning, in addition to granting a facility
for taking a particular induction algorithm into account, are as follows:

1. When multiple models (hypothesis languages) are availablepthponentsf a partition (its
subclasses) should be treated as separate parts of a decomposed learning task. Each part has
its own learning target and requires a hypothesis language well suited to expressing it. The
task of attribute-driven constructive induction, as described in Sections 2.2-2.3, is to find this
target; the task of model selection, described in Chapter 3, is to find an efficient
corresponding language. In this case, the hypothesis language is determined by two criteria:
the time series representatidagrning architecturg for a particular subset and thearning
methodfor an entire partition.

2. A partition should be evaluated on the basiscoherence(i.e., each subclass must be
cohesivaand have attributes relevant to the local or specialized learning targeéffasidncy
(it should not involve too much computational effort to combine models for each subclass).

32

A typical method for implementing inductive bias in this integrated system is heuristic search
over the state space of partitions [BF81, RN95]. This technique generalizes over a number of
algorithms that incorporate quantitative feedback. It is similar to the approaches investigated by
Kohavi and John [KJ97], but the difference is that the evaluation function is computed over
partitions, not subsets.

2.5.3 Data Fusion and Attribute Partitioning

To complete the process of multi-strategy learning depicted on the right-hand side of Figure
2, a system must be able to reintegrate the trained components. | accomplish this by organizing a
hierarchical mixture model based upon each accepted attribute partition. This mixture model
containsspecialistsubnetworks that are trained using the subproblem definitionsrantterator
networks designed to integrate these subnetworks. Each specialist subnetwork takes as input the
“columns” of the training data specified by an attribute subset, and is trained using the
intermediate concept formed for those columns) and uses the model specification found by model
selection. Each specialist network belongs to a given type of probabilistic network such a simple
recurrent network or a time-delay neural network; this architecture is specified for each
subproblem. Finally, the moderator networks are selected based on the same metric-based
method (documented in Chapter 3). This process combines subnetworks in a bottom-up fashion
until there is a single moderator network. The tree-structured overall network can be trained
level-by-level (and supportstacking[Wo92] as a statistical validation method). The way that
moderator targets are defined is a function of the mixture model. The two general categories of
mixture model that | consider aspecialist-moderator (SM) networkBH98] andhierarchical
mixtures of experts (HME)J94]. The hallmark of SM networks is bottom-up refinement of
intermediate concepts (and, conversely, top-down decomposition of learning tasks) [RH98,
HR98a]. The hallmark of HME is iterative specialization of subnetworks to distribute the
learning task evenly across moderators and among specialists. The choice of mixture models is
discussed in Chapter 3. The data fusion properties are the subject of Chapter 4 and are addressed
in greater depth there.

33

3. Model Selection and Composite Learning

Specialist-Moderator Hierarchical
Network Mixture of Experts
Gradient EM Metropolis | Gradient EM Metropolis
Gamma
Moy O - O O O O
Time Delay Neural
Network (TDNN) [B [[[O
Simple Recurrent
Network (SRN) [B [[[[
Hidden Markov
Model (HMM) [[- [[-
Temporal Naive
Bayesian Network 0 N - N N -

Legend:D = known combination]] = current research- = beyond scope of current research
Table 1. Learning architectures (rows) versus learning methods (columns)

The ability to decompose a learning task into simpler subproblems prefigures a need to map
these subproblems to the appropriate models. The general mapping problem, broadly termed
model selectioncan be addressed at very minute to very coarse levels. This chapter examines
guantitative, metric-based approaches for model selection at a coarse level. First, | present and
formalize a new approach to multi-strategy supervised learning that is enabled by attribute-driven
problem decomposition. This approach is based upon a natural extension pfaiblem
definition and technique selectiqmrocess [EVA98f. Second, | present a rationale for using
guantitative metrics to accumulate evidence in favor of particular models. This leads to the
design presented here, a metric-based selection systeiimiseries learning architecturesd
general learning methods Third, | present the specific time series learning architectures that
populate part of my collection of models, along with the metrics that correspond to each. Fourth,
| present the training algorithms and specific mixture models that also populate this collection,
along with the metrics that correspond to each. Fifth, | document a system | have developed for
normalizing metrics and a method for calibrating the normalization function from training

corpora.

3.1 Overview of Model Selection for Composite Learning

Table 1 depicts a database of learning techniques. Each row lists a temporal learning
architecture (a type of artificial neural network or Bayesian network); each column, a specific

34

learning method (a type of mixture model and learning algorithm). This section presents a new
metric-based algorithm for mapping each component of a decomposed time series learning
problem to an entry in this database. This algorithm selects the learning tecinmigtistrongly
indicated by the characteristics of each componérite objective of this approach is not only to

map subproblems tepecializedechniques for supervised learning, but also to map the combined
learning problem to the most appropriabéxture modelnd supervised training algorithm. This
process is enabled by the systematic decomposition of learning problems and the redefinition of
subproblems. My attribute-driven method for problem decomposition, given in Chapter 2,
comprises partitioning of input attributes and “cluster definition” (retargeting of intermediate
outputs to newly discovered concepts). We begin the next phase with the resulting subproblems.

3.1.1 Hybrid Learning Algorithms and Model Selection

By applying attribute-driven methods to partition a time series learning task and formulate
intermediate concepts (i.e., specialized targets) for each subtask, we have obtadefingtion
of the overall supervised learning problenT his redefinition ismodular, in that training of the
individual components can occur concurrently and locally (even independently, if the mixture
model so specifies). Another benefit of this local computation is that it supports a hierarchy of
multiple models. This dissertation considers two ways in which a hierarchy of models can
capture different aspects of the learning task as defined by partitioning: through specialization of
redundant models (top-down), and through refinement of coarse-grained specialists (bottom-up).
Both methods are designed to reduce variance and to be based upon attribute partitioning. To
properly account for the interaction between automatic methods for problem decomposition and
automatic methods for model selection, a characterizationaafel typeds needed. In order to
partially automate the kind of high-level decisions that practitioners of multi-strategy learning
make, this characterization must indicate theel of matchbetween a subproblem and each
specific type of learning model under consideration. This provides the capability to predict the
expected performance, given the candidate subproblem and model.

3.1.1.1 Rationale for Coarse-Grained Model Selection

Model selectionis the problem of choosing a hypothesis class that has the appropriate
complexity for the given training data [St77, Hj94, Sc97]. Quantitativenetric-basedmethods
for model selection have previously been used to learn using highly flexible models with many

® | will henceforth use the terrmodel selectiomo refer to both traditional model selection and the metric-
based methods for technique selection as presented here.

35

degrees of freedom [Sc97], but with no particular assumptions on the structure of decision
surfaces (e.g., that they are linear or quadratic) [GBD92]. Learning without this characterization
is known in the statistics literature amodel-free estimatioror nonparametric statistical
inference A premise of this dissertation is that, for learning from heterogeneous time series,
indiscriminate use of such models is too unmanageable. This is especially true in diagnostic
monitoring applications such as crisis monitoring, because decision surfaces are more sensitive to

error when the target concept is a catastrophic event [HGL+98].

The purpose of using model selectiondacomposabléarning problems is tfit a suitable
hypothesis language (model) to each subproblem. A subproblem is defined in terms of a subset
of the input and an intermediate concept, formed by unsupervised learning from that subset.
Selecting a model entails three tasks. The firdiriding partitionsthat are consistent enough to
admit at most one “suitable” model per subset. The secohdiiding a collection of modelthat
is flexible enough so that some partition can have at least one model matched to each of its
subsets. The third is tderive a principled quantitative system for model evaluatonthat
exactly one model can be correctly chosen per subset of the acceptable partition or partitions.
These tasks indicate that a model selection sysénhe level of subproblem defiion is
desirable, because this corresponds to the granularity of problem decomposition, the design
choices for the collection of models, and the evaluation function. This is a more comprehensive
optimization problem than traditional model selection typically adopts [GBD92, Hj94], but it is
also approached from a less precise perspective; hence thedarse-grained

3.1.1.2 Model Selection versus Model Adaptation

For heterogeneous time series learning problems, indiscriminate use of nonparametric models
such as feedforward and recurrent artificial neural networks is often too unmanageable. As
[Ne96] points out, the models that are referred tmasparametridn ANN research actually do
have well-defined parameters (trainable weights and biases) and hyperparameters (distribution
parameters for priors). A major difficulty and drawback of using ANNSs in time series learning is
the lack of semantic clarity that results from having so many degrees of freedom. Not only is the
optimization problem proportionately more difficult, but it is often nontrivial (or entirely
infeasible) to map “internal” parameters to concrete uncertain variables from the problem [Pe95].
A theoretical result that is often abused in this context is that a neural network with sufficient
degrees of freedom can express any hypothesis [RM86]. This mmelowever, mean that a
single, maximally flexible model should always be applied instead of multiple specialized ones.

36

The syndrome that | refer to as “indiscriminate use” is the typically mistaken assumption that,
even for decomposable learning problems, it is an effective use of computational power to apply
the single model. In effect, that single model is being required to achieve automatic problem
decomposition, relevance determination, localized model adaptation, and data fusion. The
alternative suggested by the “no-free-lunch” principle is to make these procegqdest, and
attempt to provide some unifying control over them through a high-level algorithm.

The remainder of this section describes a novel type of coarse-grained, metric-based model
selection that selects from a known, fixed “repertoire” or “toolbox” of learning techniques. This
is implemented as a “lookup table” of architectures (rows) and learning methods (columns). Each
architecture and learning method has a characteristic that is positively (and uniquely, or almost
uniquely) correlated with its expected performance on a time series data set. For example, naive
Bayes is most useful for temporal classification when there are many discriminatory observations
(or symptoms) all related to the hypothetical causes (or syndromes) that are being considered
[KSD96, He91]. Theabsolutestrength of this characteristic is measured by an indicator metric.
To determine itselative strength, odominancethis measure must be normalized and compared
against those for other characteristics. For example, the indicator metric for temporal naive
Bayes is simply a score measuring the degree to which observed attributes are relevant to
discrimination of every pair of hypotheses. The highest-valued metric thus identifies the
dominant characteristic of a subset of the data. This assumes that the subset is sufficiently
homogeneous for a single characteristic to domiaatkto be recognized

The metric-based approach literally emphasigeectionof models, whereas most existing
approaches are more parameter-intensive, and might better be described asdapdiion
This is an important distinction when attempting to learn from heterogeneous data. Model
adaptation then tends to suffer acutely from the complexity costs of having many degrees of
freedom, while problem decomposition with coarse-grained model selection can relieve some of

this overhead.

3.1.2 Composites: A Formal Model

This section definesompositeswhich are attribute-based subproblem definitions, together
with the learning architecture and method for which this alternative representation shows the
strongest evidence.

37

Definition. A compositeis a set of tuplesL = ((A,B,,6,.¥,,S,) .. .(A. B, 6, . Vi »S))
where A, and B; are sets of input and output attribut@s, and y; are namesof network

parameters and hyperparameters cf. [Ne96] (i.e., the learning architectur§) jaticenameof a
learning method (a training algorithm and a mixture model specification).

A composite is depicted in Figure 1 of Chapter 1, in the box labeled “learning techniques”.

Intuitively, a composite describes all of the model descriptors that can be chosen by the
overall learning system. This includes the trainable weights and biases; the specification for
network topology (e.g., number, size, and connectivity of hidden layers in temporal ANNSs); the
initial conditions for learning (prior distributions of parameter values); and most important for
time series learning, the process model. The process model describes the type of temporal pattern
that is anticipated and the stochastic process assumed to have generated it. In terms of network
architecture, it specifies thmemory typdthe mathematical description of the pattern as a finite
function of time) [M094, MMR97].

A composite also specifies the network types for moderator networks (also knogatiag
[JJ94], fusion [RH98], or combiner[ZMW93] networks) in the mixture model. Because the
problem is decomposed by attribute partitioning, a moderator network is always required
whenever there is more than one subset of attributes. | discuss this aspect of composites in
Section 3.4 and in Chapter 4. Finally, a composite specifies the training algorithm to be used for
an entire partition (i.e., each subproblem, as defined for each subset). Both the mixture model
and the training algorithm are selected based upon quantitative analysis of the entire partition, as |
explain in Section 3.4.

Property. In a learning system where task decomposition is driven by attribute partitioning,
the set union of is the original set of attribute& (by definition of apartition) and each set of
output attribute$; is an intermediate concept correspondingito

The reason why attribute subsets are included in a composite is that they specify the way that
a problem is partitioned with sufficient information to build the subnetworks for each subproblem
(i.e., to extract the input and produce the target outputs for every subnetwork). Thus, a composite
contains every specification needed to generate a hierarchical model (specialists and moderators)

38

given the training data Composites are generated using the algorithm given in the following

section.

3.1.3 Synthesis of Composites

A general algorithm for composite time series learning follows.

Given:

1. A (multiattribute) time series data set
D = ((x®, y), ..., x™, y™)) with input attributes
A=(ay, ..., a) such thax® = (x,*, ..., x”) and output attributeB = (b, ..., bo) such that
V= i . ye®)

2. A constructive induction functiok (as described in Chapter 2) such tkéA, B, D) = {(A’,
B’)}, where A’ is an attribute partition an&’ is a group of intermediate concepts for each
attribute subsets, found by problem redefinition (cluster description) #sing

Algorithm Select-Net(D, A, B, F)
repeat
Generate a candidate representaiign B)OF(A B,D).
for each learning architectumé
for each subsed’ of A’
Computearchitecturalmetricsx;;” = m2(A’, B;") that evaluater®
with respect tdA/’, By').
for each learning architectur
Computedistributionalmetricsx,” = m2(A’, B) that evaluata®
with respect toA’,B).
Normalize the metricg; using a precalibrated functidd, — see Equation 1.
Select the most strongly prescribed architect{grgy)and learning metho& for (A', B'), i.e.,
the table entry (row and column) with the highest metrics.
if the fitness (strength of prescription) of the selected model meets a predetermined threshold
then accept the proposed representation and learning tech(mqtg;e,g, v, s)
until the set of plausible representations is exhausted
Compile and train @ompositel, from the selected complex attributes and techniques.
Compose the classifiers learned by each compondntusiing data fusion.

39

t; :shapeparameter
Ar scaleparameter

G,(x,) = fo,(x)dx

-A;X t-1
fr(X) — /]re (/]TX)

r(t,)

rt,) = Yey tdy

Equation 1. Normalization formulas for metrics x; (T = metric type)

The normalization formulas for metrics simply describe how to fit a multivariate gamma
distribution f;, based on aorpus of homogeneous data sété [HZ95]). Each data set is a

“training point” for the metric normalization functioi;; (i.e., the shape and scale parameters of
f).

The above algorithm describes how to build a composite sgegificationfor supervised,
multi-strategy learning on a decomposed time series, and how use it to carry out this learning.
The remainder of this chapter describes the mechanisms for populating the database of learning
technigues using all of the model components that are described in a composite, and how to
calibrate the metrics for selecting these components.

3.2 Quantitative Theory of Metric-Based Composite Learning

This section presents the metric-based component of a new multi-strategy model selection
system. Using approximate predictors of performance for each learning technique, | develop the
algorithm outlined in Section 3.1.3 for selecting the learning technique most stiodggated by
the data set characteristics

3.2.1 Metric-Based Model Selection

The premise that nonparametric models such as feedforward and recurrent artificial neural
networks should not be applied without explicit organization is borne out by numerous studies in
the literature [GBD92]. The negative consequences of such ad-hoc usage, as reflected in network
complexity, convergence speed, and prediction quality, is especially evident in time series

40

learning [GW94, Ne96]. Prediction quality typically has a nonlinear utility in time series
prediction, with the shape of this function depending upon the inferential application [He91,
BDKL92, RN95, DL95]. In Chapters 4 and 5, | describe some synthetic and real-world problems
in time series learning that illustrate the overhead costs of single-strategy, adaptive models versus
multi-strategy model selection.

Quantitative methods for model selection allow the performance of inductive learning
techniques to guide the choice of a particular technigue from among many different
configurations. The metrics used @stimatingperformance might be direct measurements or
indirect predictors. Direct measurements incluscriptive statistigssuch as the mean and
variance for prediction accuracy and the confidence intervals for each mean (using a particular
technique). Greiner, for example, developed an estimation procedure for performance of an
induction algorithm that is used for tuning of various learning parameters [Gr92]. The
performance of two candidate induction algorithms is compared by holding a “race” between
them: specifically, prediction accuracy is computed until the confidence intervals for the mean (at
some specified confidence level) no longer overlap. Kohavi incorporated this procedure into
attribute subset selection [Ko95]. TREELVE system, developed at the University of Toronto,
takes a more sophisticated approach toward tracking and analyzing the long-term (and case-
specific) competitive behavior of learning algorithms, also using descriptive statistics [RNH+96].

In some learning applications, time and computational resource limitations make it less
feasible to collect descriptive statistics than to compute metrics #stitnate expected
performance In coarse-grained model selection, this methodndirect predictionis efficient
when a learning technique is one of several combinations (as is the case for the database shown in
Table 1). The savings in computational work are combinatorially magnified when there are
subproblems for which a model must be selected. The interaction among these subproblems at
the level of the mixture model (i.e., at afloderator networltevels, as defined in Section 3.4 and
Chapter 4) means that every combination of learning technique configurations among
subproblems must be tested. As Table 1 shows, there are up to 23 implemented configurations
that may be tested for singlesubproblem. Even with equality constraints on the mixture model
and algorithm (the selected column), the number of combinations is an exponential function of
the number of subsets, with a relatively large base. Appendix A describes this growth in more
detail. There may also be insufficient computational resources to otbaiclusivedescriptive
statistics. In this case the predictive method may or may not help, depending on how

41

representative the training corpus is for metric normalization (see Section 3.5 and Chapter 5).
That is, metrics for indirect prediction may outperform “try and see” methods if the volume of
training data is relatively small compared to the size of the desired inference space (the volume of
test data)put the metrics have been calibrated with many more representative test beds. Finally,
feedback from the normalized metrics is useful as a heuristic evaluation function for attribute

partition search, as documented in Section 2.4.3 and Chapter 5.

3.2.2 Model Selection for Heterogeneous Time Series

This section first surveys three types lafear processes [GW94, M094] for time series
learning. Next, it presents three corresponding artificial neural network models that are
specifically designed to represent each process type and the algorithms that are used to train these
models. Then it surveys additional types of temporal patterns that can be efficiently expressed by
temporal Bayesian network models and discusses how the same algorithms can sometimes be
adapted to train them. Finally, it examines the methodology of existing mixture models and
explains how the two used in my system were developed.

To model a time series as a stochastic process, one assumes that there is some mechanism
that generates a random variable at each point in time. The random vark)esan be
univariate or multivariate (corresponding to single and multiple attributeb@nnelsof input per
exemplar) and can take discrete or continuous values, and time can be either discrete or
continuous. For clarity of exposition, my experiments focus on discrete classification problems
with discrete time. The classification modelgeneralized linear regressidiNe96], also known
as al-of-C codingSa98] orlocal coding[KJ97].

Following the parameter estimation literature [DH73], time series learning can be defined as
finding the parameters®@={4,,...,6,}that describe the stochastic mechanism, typically by

maximizing the likelihood that a set of realized aloservablevalues {x(t,), x(t,), ..., x(t,)} were

actually generated by that mechanism. This corresponds to the backward, or maximization, step
in the expectation-maximization (EMalgorithm [DH73]. Forecasting with time series is
accomplished by calculating the conditional densiy (t)|{e,{X{t-1),..., X({t-m}}}), when the

stochastic mechanism and the parameters have been identified by the observabléx{@jues
The ordem of the stochastic mechanism can, in some cases, be infinite; in this case, one can only

approximate the conditional density.

42

Despite recent developments with nonlinear models, some of the most common stochastic
models used in time series learning are parametric linear models @altedegressive (AR),
moving average (MAjandautoregressive moving average (ARMAdcesses.

MA or moving average processes are the most straightforward to understand. HiFgt)}let
be some fixed zero-mean, unit-variance “white noise” or “purely random” process (i.e., one for

which Coz(t,), z(t,)] =1 iff t, =t,, 0otherwise).X(t) is anMA(q) process, or “moving average

process of orden’, if x(t):zq: B.Z(t-r1), where the B, are constants. It follows that
=0

E[X(t)] =0and Var[X(t)] = Zq: B, - Moving average processes are often used to describe stochastic
=0

mechanisms that have a finite, short-term, linear “memory” [M094, Ch96, MMR97, PL98]. The
input recurrentnetwork [RH98], a type okexponential tracememory [M094, MMR97], is an
example of a model foMA(1).

AR or autoregressive processes are processes in which the values atiépend linearly on
the values at previous times. WiZ(t)} as defined aboveX(t) is an AR(p) process, or

p
“autoregressive process of ordet, if Zaux(t -v)=2Z(t), where thea,, are constants. In this

u=0
case, E[X(t)] = 0, but the calculation of/ar[X(t)] depends upon the relationship among thg:

in general, if‘au‘ >1, thenX(t) will quickly diverge. AR processes can be expressed by certain

exponential trace memory forms (specifically, Jordan recurrent networks [Jo87, PL98]) or by
time-delayor tapped delay-line neural networkg DNNs [LWH90, MMR97] or delay-space
embeddingMo094]). They are equivalent to infinite-lengtA processes [BD87, Ch96].

ARMAIs a straightforward combination &R andMA processes. With the above definitions,
an ARMA(p, q)process is a stochastic procegs) in which Zp:aux(t -v)= Zq: B,z(t-r), where
v=0 =0

the {a,, .} are constants [M094, Ch96]. Because it can be shownARandMA are of equal

expressive power, that is, because they can both represent the same linear stochastic processes
(possibly with infinitep or g) [BJR94], ARMA model selection and parameter fitting should be
done with specific criteria in mind. For example, it is typically appropriate to balance the roles of

43

the AR(p)andMA(q), and to limitp andq to small constant values for tractability (empirically, 4
or 5) [BJR94, Ch96, PL98]. Th&éamma memorjDP92, PL98] is an example of aaRMA (p,
g) model.

In heterogeneouime series, the embedded temporal patterns belong to different categories
of statistical models, such aglA(1) and AR(1) Examples of such embedded processes are
presented in the discussion of the experimental test beds in Chapter 5 and the appendices. As
discussed in Section 2.2, a multiattribute time series learning problem can be decomposed into
homogeneous subtasks by synthesis of attributes or by partitioning. Decomposition of time series
by partitioning is applicable in multimodal sensor fusion (e.g., for medical, industrial, and
military monitoring), where each group of input attributes represents the bands of information
available to a sensor [SM93]. Analogously, in geospatial (map-referenced) data mining,
attributes may be grouped on the basis of sensor or measurement sites (i.e., how the locations of
observations are clustered). Complex attributes magymthesizedexplicitly by constructive
induction, as in causal discovery of latent (hidden) variables [He96]; or implicitly by
preprocessing transforms [HR98a, RH98].

Artificial neural network architectures that correspond to ARMA, MA, and AR processes are
called, respectivelyGamma network$whose individual units are known as Gammamorie}
[DP92, M094, MMR97, PL98],simple recurrent network§SRN$ [Mo94, Ha95, MMR97,
PL98], andtime-delayor tapped delay-line neural networK3DNNg [LWH90, Ha94, Mo94,
MMR97, PL98]. Note that SRNs may represeithernonlinear AR (Jordan-type [Jo87, PL98])
or nonlinear MA(1) (input-recurrent [M094, MMR97, PL98, RH98]) processes. Minsky and
Papert [MP69] first discussed SRNs, but adaptations defta rule learnin§ such as
backpropagation through tim@PTT) were first developed by Rumelhagt al [RM86]. Specific
architectural types were developed by Elman [EI90], Jordan [M094], and Priecgd¢PL98].

Other algorithms that are used to train temporal ANNs includé=ttpgectation-Maximization
(EM) algorithm [DLR77, BM94], a local optimization algorithm for probabilistic networks, and
the Metropolisalgorithm for simulated annealing [KGV83, Ne93]. Appendix B describes these
algorithms, and their implementation in my system, in greater detail.

® A family of local, gradient-based optimization algorithms also referred tmakpropagatiorof error.

44

Both EM and gradient learning can be used to learn the conditional probabilities associated
with parent sets in temporal Bayesian networks [Ne93] and with state transitions and output
distributions in hidden Markov models [Le90, BM94]. This approximate process is known as
parameter estimationn the statistical inference literature [GBD92, Ne96]. Appendix B also
describes the adaptation of EM and gradient learning to parameter estimation in temporal
Bayesian networks.

Our survey of the learning components with which to populate a database of concludes with a
brief discussion of mixture models and hierarchical structure. Sections 3.4 and 3.5 and Chapter 4
provide more technical detail regarding the architecture of hierarchical mixtures (especially
fusion networks) as used in this dissertation. Meanwhile, the following synopsis gives the design
rationale for the organization of columns shown in Table 1. A mixture model is needed to
reintegrate intermediate predictions from multiple subnetworks for each subproblem obtained by
systematic decomposition. This research considers two basic designs for mixture models:
bottom-up refinement to account for the differences in intermediate concepts achieved by input
attribute partitioning. This corresponds to a single-pass construction whose purpose is to
combine multiple “specialist” models (possibly of different types) with lower resolution
capability into a more powerful model with reduced localization error. The mixture model used
to implement this design is calledspecialist-moderator networflkiR98a, RH98], and it is fully
documented in Chapter 4. The second category of mixture models used is the top-down “load-
distributing” mixture that divides the learning problem by weighting subtrees of the hierarchy so
as to force specialization of the individual subnetworks to different parts of the (possibly
multimodal) overall target distribution. This corresponds to a multi-pass training procedure
whose purpose is to find a “good split” of the mixture (“gating network”) weights and an even
distribution of the learning task among “expert” subnetworks. The mixture model used to
implement this design is a variant of thiéerarchical Mixture of Expert§HME) of Jordanet al
[JIB91, JINH91, JJ94], which assumes identical inputs and intermediate target concepts. | relax
this assumption for compatibility with the attribute partitioning and multi-strategy learning
approach. Chapter 4 discusses the ramifications of this design.

3.2.3 Selecting From a Collection of Learning Components

The remainder of this section describes a novel type of metric-based model selection that
selects from a known, fixed “repertoire” or “toolbox” of learning techniques. This is

45

implemented as a “lookup table” @rchitectures(rows) andlearning methodgcolumns). In
object-oriented design terms, the learning architecture corresponds to the data structures and
instance variables of a class definition; the learning method (both the algorithms and mixing
procedure), to the methods of this class. Each architecture and learning method has a
characteristic that is positively (and uniquely, or almost uniquely) correlated with its expected
performance on a time series data set. For example, naive Bayes is most useful for temporal
classification when there are many discriminatory observationsyiomptomyall related to the
hypothetical causes (ayndromek that are being considered [He91]. The strength of this
characteristic is measured by architectural or distributional metric. Each is normalized and
compared against those for other (architectural or distributional) characteristics. For example, the
architectural metric for temporal naive Bayes is simply a score measuring the degree to which
observed attributes amelevantto discrimination of every pair of hypotheses. The “winning”
metrics thus identifies the dominant characteristics dusetof the data (if this subset is
sufficiently homogeneous to identify a single winner). These subsets are acquired by selecting
input attributes(i.e., channels of time series data) from the original exemplar definition (cf.
[KJ97]).

The metrics are calleghrescriptive because each one provides evidence in favor of an
architecture or method. The design principle for prescriptive metrics is twofold. First, the goal is
to derive anormalized, quantitativeneasure for each modeategoryof the degree to which a
training data set matches itharacteristics The characteristics of interest are tinemory form
[Mo94], which captures the short-term memory capabilities of a time series model. The measure
should be quantitative and continuous in order to admit computation to the desired degree of
precision and comparison with any other measure. Furthermore, it must be normalized in order
for this comparison to be well defined. Because each metric prescribes a particular model type,
there are one-to-one correspondences between architectural metrics and rows of Table 1 and
between distributional metrics and columns of Table 1. Each metric should be high if and only if
the memory form (for architectural metrics) or a similar unique kadnablecharacteristic (for
distributional metrics) is present. According to these design criteria, model can be selected by
simply accepting the model that is prescribed (or endorsed) by the highest-valued metric. This
means that theirangesshould be finite and identical.

The next section describes a database of available learning architectures and methods
(mixture models and algorithms). Based on the formal characterization of these learning

46

technigues as time series models [GW94, M094, MMR97], indicator metrics can be developed
for the temporal structureand mixture distributionof a homogeneoutime series (i.e., one that
hasidentifiable dominant characteristics). The highest-valued (normalem@fjitectural metric

is used to select the learning architecture; the highedistributionis used to select the learning
method.

3.3 Learning Architectures for Time Series

For time series, we are interested in actuaigntifyinga stochastic process from the training
data (i.e., a process that generates the observations). The performance element, time series
classification, will then apply anodelof this process to a continuation of the input (i.e., “test”
data) to generate predictions. The question | have addressed in this chapter is: “To what degree
does the training data (or a restriction of that data to a subset of attributes) probabilistically match
a prototype of somd&nown stochastic process?” This is the purpose of metric-based model
selection: to estimate the degree of match between a subset of the observed data and a known
prototype. Prototypes, in this framework, anemory formgMo94], and manifest as embedded
patternsgenerated by the stochastic proceébat the memory form describes. For example, an
exponential trace memory form can express certain types of MA(1) processes. The kernel
function for this process is given in Section 3.2.2. The more precisely a time series can be
described in terms of exponential processes (wherein future values depend on exponential growth
or decay of previous values), the more strongly it will match this memory form. The stronger this
match, the better the expected performance of an MA(1) learning model, such as an input
recurrent [R) network. Therefore, a metric that measures this degree of match on an arbitrary

time series is a useful predictor of IR network performance.

3.3.1 Architectural Components: Time Series Models

Learning Architecture Architectural Metric

Simple recurrent network (SRN) Exponential trace (AR) score

Time delay neural network (TDNN) | Moving average (MA) score

Gamma network Autoregressive moving average (ARMA) score

Temporal naive Bayesian network | Relevance score

Hidden Markov model (HMM) Test set perplexity

Table 2. Learning architectures and their prescriptive metrics

47

Table 2 lists five learning architectures (the rows of a “lookup table”) and the indicator
metrics corresponding to their strengths. The principled rationale behind the design of these
metrics is that each is based on an attribute chosesottielate positively(and, to the extent
feasible,uniquely with the characteristic memory fornof a time series. Amemory formas
defined by Mozer [M094] is the representation of some specific temporal pattern, such as a
limited-depth buffer, exponential trace, gamma memory [PL98], or state transition model.

SRNs, TDNNs, and gamma networks are all temporal varieties of artificial neural networks
(ANNs) [MMR97]. A temporal naive Bayesian netwagka restricted type of Bayesian network
called aglobal knowledge magas defined by Heckerman [He91]), which has two stipulations.
The first is that some random variables may be temporal (e.g., they may denote the durations or
rates of change of original variables). The second is that the topological structure of the Bayesian
network is learned by naive Bayes. A hidden Markov model (HMM) is a stochastic state
transition diagram whose transitions are also annotated with probability distributions (over output
symbols) [Le89].

3.3.2 Applicable Methods

The methods that can be used with each learning architecture are indicated in Table 1 by the
symbols[l(denoting an existing implementation) and (denoting a new implementation
developed for this dissertation). Rows are integrated with columns to form a complete
description of a learning technique (the part of a composite other than the problem definition).
This is implemented by building a probabilistic network (temporal ANN or temporal Bayesian
network) with the topology specified by the selected row, training it together with the other
subnetworks, and incorporating it into the overall mixture model. Appendix B gives technical
details of this implementation. Some training issues and the ramifications for the mixture model

are discussed in Section 3.4.

3.3.3 Metrics for Selecting Architectures

The prototype architectural metrics for temporal ANNs are average autocorrelation values for
the preprocessed data. Memory forms for temporal ANNs can be characterized using a formal
mathematical definition called the kernel function. Convolution of a time series with this kernel
function produces a transformed representation under its memory form [Mo94, MMR97]. The
design principle behind the architectural metrics for temporal ANNs is that a memory form is

48

strongly indicated if the transformed time series has significantly lower uncertainty (conditional
entropy) than the original series.

For example, to compute the degree of match withM#y(1) process, convolution of an
exponential decay window (an MA(1) kernel function) is first applied [MMR97]. The decrease
in entropy obtained by conditioning on this window of wigihs then compared against that for
other memory forms. This estimates the predictive power of the model if chosen as the learning
architecture. The convolutional formalism and metrics for MA, AR, and ARMA processes are
given in Appendix C.

The score for temporal naive Bayesian network is the average number of variables relevant to
each pair of diagnosable causes (i.e., hypotheses) [He91]. This score is computed by constructing
a Bayesian network by naive Bayes [Pe88] and then averaging a relevance measure (cf. [KJ97])
on the conditional distribution of symptoms (input attributes) versus syndromes (hypotheses).
This relevance measure may be as simple as an average of the number of relevant attributes.
Kohavi and John [KJ97] survey relevance measures from the literature and compares their merits
for attribute subset selection. Heckerman [He91] also defines a relevance measure for Bayesian
network structuring that may be useful as a prescriptive metric for temporal Bayesian network
architectures.

Finally, the indicator metric for HMMs is the empirical perplexity (arithmetic mean of the
branch factor) for a constructed HMM [Le89].

3.4 Learning Methods

HME, gradient Modular cross entropy

HME, EM Modular cross entropy + missing data noise
HME, MCMC Modular cross entropy + sample complexity
Specialist-moderator, gradient Factorization size

Specialist-moderator, EM Factorization size + missing data noise
Specialist-moderator, MCMC Factorization size + sample complexity

Table 3. Learning methods and their prescriptive metrics

49

Table 3 lists six learning methods that correspond to the columns of the database of learning
techniques depicted in Table 1. These learning methods are organized under the main heading of
“mixture model used” and the subheading of “training algorithm”. Section 3.4.1 presents the two
available mixture models, justifies their use in constructing the database, and explains how they
govern both the learning architectures and the application of training algorithms. Section 3.4.2
relates the training algorithms to specific learning architectures (described in Section 3.3) and
describes how this combination defines the overall learning technique. Finally, Section 3.4.3
documents how the distributional metrics are derived and how they are used to select the learning
methods.

3.4.1 Mixture Models and Algorithmic Components

This section documents the mixture models that are used to organize specialized time series

models (subnetworks) into a hierarchy, and their relation to training algorithms for each

subnetwork.
y
J1
|
9]
A 2
X i yl y2
J11 Oz
Gating —| |_ Gating
Network Network
J21 J12
o [x
Y11 Y12 Yo1 Y22
Expert Expert
Network Network
A A A A
X X X X

Figure 4. A Hierarchical Mixture of Experts (HME) network

50

A hierarchical mixture of expertddME), shown in Figure 3, is a mixture model composed of
generalized linear elements (as used in feedforward ANNs) [JJHN91, JJ94]. It can be trained by
gradient learning, expectation-maximization [JJ94], or Markov chain Monte Carlo (MCMC)
methods (i.e., random sampling as in the Metropolis algorithm for simulated annealing)
[MMR97].

A specialist-moderator networis a new, hierarchical mixture model that can combine
predictions from different learning architectures and whose components have different input and
output attributes [HR98a, RH98]. Specialist-moderator networks are discussed briefly in this
section and in greater detail in Chapter 4.

Figure 4 depicts aspecialist-moderator (SMhetwork, which combines classifiers in a
bottom-up fashion. Its primary novel contribution is an ability to learn using a hierarchy of
inductive generalizers (components) while utilizoifferences among input and output attributes
in each component. These differences allow the network to fotenmediate targetbased on
the learning targets of its components, yielding greater resolution capability and higher
classification accuracy than a comparable non-modular network. In time series learning, this
typically means reduced localization error, such as in multimodal sensor integration [HR98a,
RH98]. Each component (box) in Figure 1 denotes a self-contained statistical learning model
such as a multilayer perceptron, decision tree, or Bayesian network. | choose to experiment with
artificial neural networks (ANNS) because the target application is time series classification, and
ANNSs readily admit extension to time series [EI90, PL98]. The tespscialistor moderator
may denote arbitrary learning models in the overall network (a tree of components), but are
assumed to be ANNs here.

An SM network is constructed from a specification of input and output attributes for each of
several modules (the leaves of the network). Training data and test input will be presented to
these “specialists” according to this specification. The construction algorithm simply generates
new input-output specifications fonoderatornetworks. The target output classes of each parent
are the Cartesian product (denot&} of its children’s, and the children’s outputnd the

concatenation of their inputs (denotedare given as input to the parent.

51

Yor=Y11%XY12

Moderator _
€ Xo1 = Xq1Xqp

Network

Y11= Y12 = Y03X Yo
Z N\

Moderator Moderator
| Network Network |
12 = Xp3° X4

xll = X
Yo3 Yoa

Specialist Specialist
Network Network
A A
Xo3 Xo4

Figure 5. A Specialist-Moderator network

One significant benefit of this abstraction approach is that it exploits factorial structure (i.e.,
the ability of high-level or abstract learning targets to be factored) in decomposable learning
tasks. This results in a reduction in network complexity compared to non-modular or non-
hierarchical methodsyhenever this structure can be idéied (using prior knowledge, or more
interestingly, through clustering or vector quantization methods). In addition, the bottom-up
construction supports natural grouping of input attributes basedantalitiesof perception (e.qg.,
the datachannelsor observable attributes available to each “specialist” via a particular sensor).
In Chapter 5, | demonstrate that the test error achieved by a specialist-moderator network on
decomposable time series learning problems is lower than that for non-modular feedforward or

temporal ANN (given limits on complexity and training time).

3.4.2 Combining Architectures with Methods

The learning combination specified by combining a particular lear@irghitecture and

training algorithm determines a learning specification for a single subproblem. When taken in

52

the context of a particulanixture modelthis combination corresponds to a single entry (row and
column) in Table 1. Each entry, plus the definitighy, B)) for the subproblem, is therefore

equivalent to one tuple (Ai, B..6,.Vi, Sl) in a composite
L=((A.B.6,.5,.S)....(A.B..6,.y..S)) Alltuples together constitute, which is used

as a training specification for the entire partition.

Training of each subnetwork occurs concurrently. ltindependentin the case of SM
networks (that is, there is no communication of data between any specialist subnetworks) and
interleavedin the case of HME networks (that is, information is transmitted through the gating
network mechanism because each level is successively updated on every top-down pass). Thus,
SM networks are fully data parallel, while HME networks require synchronization.

3.4.3 Metrics for Selecting Methods

This section outlines the metrics for selecting learning methods, which are further
documented in Appendix C. It is important to note that a distributional metridus@ion of an
entire partition(as applied to a training data set), while one architectural metric is calcutated
every subset of that pition. When compiling a composite, the same distributional metric is
used with every row of the lookup table (i.e., the corresponding choice of column is identical).

The distributional metrics for HME networks are based on modular mutual information.
Mutual information is defined as the Kullback-Leibler distance between joint and product
distributions for two random variables, or, in this case, groups of them [CT91]. The conditional
mutual information measure to beaximizeds that between each subset of attributes and the
desired output, given a fixed sum of the mutual information measures conditioned on all
preceding subsets in some arbitrary ordering. The conditional mutual information measure to be
minimizedis the cumulative or “overlap” region [Jo97b]. This minimizes the amount of
uncertainty (i.e., “work”) to be performed by the gating component and tends to evenly distribute
this work among all branches of the tree-structured mixture model (cf. [JJ94]). This metric is
derived and fully documented in Appendix C.

The metrics for specialist-moderator networks are proportional to factorization size (the
number of distinguishable equivalence classes of the overall mixture divided by the product of its
components’). This metric is derived and fully documented in Appendix C.

53

To select a learning algorithm, gradient learning is defined as a baseline, and a term is added
for the gain from estimation of missing data (by EM) [JJ94] or global optimization (by MCMC)
[Ne96], adjusted for the conditional sample complexity.

3.5 Theory and Practice of Composite Learning

This section concludes the presentation of the composite learning alg@ghent-Netand
the metric-based model selection phase. First, | list the main desiderata for composites and the
metrics used to select their learning model portions. These are related to hypotheses that may be
evaluated for the metrics, and for the normalization process that allows them to be compared.
Second, | outline a technique for calibrating metrics based on representative data sets (corpora).
Third, 1 list the uses of the normalized metric values in my system.

3.5.1 Properties of Composite Learning

The desired properties for all architectural and distributional metrics are as follows:

1. Each can be normalized and compared on an objective scale to any other architectural or
distributional metric for an arbitrary learning problem defined on an attribute subset or
partition. This suggests that the metric be quantitative and continuous-valued.

2. Each igositivelycorrelated with the expected performance of the corresponding learning
architecture or method. This hypothesis can be, and is, tested empirically, with the
findings reported in Chapter 5 as part of the general results on composite learning.

3. Each isuniquelycorrelated (or more strongly correlated than any other metric, with a
high degree of statistical confidence) with this expected performance. Again, this
hypothesis can be, and is, tested as part of the evaluation experiments for composite

learning.

3.5.2 Calibration of Metrics From Corpora

Calibration of model selection metrics from corpora is a well-tested method in empirical
methods for speech recognition [Le89] and natural language processing. The formula for
normalizing metrics in this system, given in Equation 1 of Section 3.1.3, is an application of this

54

method to learning from heterogeneous time series. Previously, | have successfully used a very
similar approach to calibrate metrics for technique selection in heterogeneous file compression.
Details are documented briefly in Appendix D, but the interested reader is referred to [HZ95] for
the full explanation. The corpora used to calibrate my normalization function comprise both real-
world and synthetic data. The normalization parameters that are being estimated, or learned, by
this higher-order training process are thlkeape and scale parameterst; and A, for each
multivariate Gamma distribution (with 5 variables for learning architectures and 6 for learning
methods).

3.5.3 Normalization and Application of Metrics

Once the metrics are properly normalized, the selection mechanism for learning architectures
and methods is straightforward: it suffices to choose the row or column corresponding to the
maximal normalized metric value (ties are very rare when the metrics in question do not have the
maximum value on the normalized scale). The metrics, however, are also applied as feedback for
partition search (and can be used in other wrapper-driven parameter tuning systems, cf. [Ko95,
KJ97)).

55

4. Hierarchical Mixtures and Supervised Inductive Learning

Decomposition of supervised learning tasks in this dissertation entails three stages:
subproblem definition, model selection for subproblems, and reintegration of trained models.
This chapter examines the third and final stage, reintegration, by medmsrafchical mixture
models First, | present the problem alata fusionin composite learning, and a generic,
hierarchical approach using probabilistic networks. This generic design originated concurrently
with that of the learning systems for the first two stages. Second, | surveki¢harchical
mixture of expert§HME), a multi-pass architecture for integration of submodels. HME supports
a type of self-organization over submodels that are assumed to be identical in the original
formulation. | adapt HME to multi-strategy learning from time series. Third, | survey the
specialist-moderatofSM), a single-pass architecture for integration of non-identical models. The
SM network was specifically designed for data fusion in decomposition of learning tasks. Fourth,
| present the high-level algorithms for constructing and training hierarchical mixture models of
both types using composites (specifications of subnetwork types and training algorithms). The
constructions and training procedures raise some analytical issues and performance issues, which
| address here. Fifth, | investigate some important properties of hierarchical mixture models that

are useful in evaluating their performance empirically.

Performance Element:

Time Series Classification

Yuu

Learning

I Moderator/Gating Element

X1 Subnetwork

Yo1 / \ Yo2

pecialist/Expert Specialist/Expert
Subnetwork Subnetwork

n

Preprocessing Element:
Attribute Partitioning

Figure 6. Role of hierarchical mixtures in decomposition of time series learning

56

4.1 Data Fusion and Probabilistic Network Composites

Figure 6 depicts a learning system for decomposable time series. The central element of this
system is a hierarchicahixture model- a general architecture for combining predictions from
submodels. In this dissertation, the submodels are temporal probabilistic networks such as
recurrent ANNs. Attribute partitioning, described in Chapter 2, produces the subdivided inputs,
Xon, t0 thesespecialist or expert subnetworks (henceforth callespecialistsor experts.
Unsupervised learning methods such as self-organizing feature maps (SOFMs) [Ko90] and
competitive clustering [Ha94] are applied to form intermediate targgtsalso as described in
Chapter 2. The subnetwork types, the algorithms used to train them, and the overall organization
of the mixture model (including the types ofioderator or gating subnetworks used), are
selected from a database of components. This database and the metric-based model selection
process are documented in Chapter 3. The overall congepis(the learning target for the top-
level moderator subnetwork (henceforth callegnaderatoy in this hierarchy. Definition of
inputs and outputs for specialists and moderators is the topic of this chapter.

This section presents hierarchical mixture models for reintegrating all the trained components
of a composite time series model. Two kinds of mixtures are applied in this resepedialist-
moderator(SM) networks andhierarchical mixtures of experéiME). | begin by outlining the
general framework of hierarchical mixture models and HoM networksand HME relate to
problem decomposition and multi-strategy learning. | then explain how sensor and data fusion
applications make this relationship especially important to time series learning. Finally, | discuss
the role of hierarchical mixtures in my overall system, especially their benefits towards attribute-
driven problem decomposition and metric-based model selection for composite learning.

4.1.1 Application of Hierarchical Mixture Models to Data Fusion

In time series analysis, the problem of combining multiple models is often driven by the
sources of datahat are being modeled. In formal terms, a source of data is any stochastic
process that contributes to the observed data. For time series, we are interested in actually
identifying from training data, the best probabilistic match to a prototype of some known
stochastic process. This is the purpose of metric-based model selection, where each “known
process” has its own architectural metric and prescribed learning architecture. Traditionally,
domain knowledge about the sources of data is used in their decomposition [HR98a, HGL+98].
This is discussed in Section 1.1; examples of heterogeneous time series with multiple data
sources include multimodal sensor integration (sensor fusion) and multimodal HCI. Chapter 2

57

describes a knowledge-free approach that can be applied when such information is not available,
but the learning problem is decomposable.

A mixture modelis one that combines the outputs of a finite set of subordinate models by
weighted averaging [Ha94]. The weights are referred tonasng proportions{Ha94], mixing
coefficients gating coefficientgJJ94], or simply “weights”. Traditionally, a mixture model is
formally defined as a probability density function (pdf), that is the sum of weighted

contributions from subordinate models:

f(y;0,7)= > 71,1, (y:0)

n=1

N
where Y 77, =1 and 77,=0 foralln
n=1

f, are the individual pdfs for mixture components, drawn from populat&ng < n < N, andf
is a pdf over sampleyg drawn uniformly fromS. That is, f, denotes the likelihood thah
contributesy to the mixtureS 15 denotes th@ormalized weightor this likelihood [Ha94]. The
parameter® include all unknowns in the model upon which the distributidnsre to be
conditioned (i.e., the internal parameters of the subordinate models). As | explain below, this
generalizes over all of the mutable parameters in the learning architecture, such as network
weights and biases. The hyperparametesse simply the mixing coefficients. The mixture
modeling problem is to fifrt, given training datay, ..., ¥», ¥). An alternative definition [JJ94]
that is more familiar to the nomenclature of connectionist (probabilistic network) learning is to
estimate the distribution of as a weighted sum of predictions (the outputs of expert
submodels, henceforth referred to as “experts”):

N

y=>my,

n=1

N
where Y 77, =1 and 77,20 foralln
n=1

T, still denotes thenormalized weightfor a likelihood function over samples from a
population, but we have now specified that gstimatorfor the likelihood function is the output
of an expert. As Jordan and Jacobs [JJ94] and Haykin [Ha94] note, experts may be arbitrary
learning components. For example, Haykin specifically considers experts tmateagenerators
or arbitrary probabilistic network regression models, with real-valued, discrete, or 1-of-C

58

(“locally”) coded targets [KJ97, Sa98]. In this dissertation, | have considered only discrete
(including binary) and 1-of-C-coded classification.

Finally, an even more flexible formulation of mixture models isaakierarchical mixture
network whose vertices all represent subnetworks. The leaves are experts or specialist networks;
the internal vertices, gating or moderator subnetworks. The target distribifyipris thus
described as a parameter estimation problem, where the submodel parafnételeng to
probabilistic networks such as feedforward or recurrent ANNs. For feedforward ANNs (also
calledmultilayer perceptrons the mixture model description is:

y = f(y”), 1<n<N
where

fk and h; denote outputs from the output and hidden layers, respectively, of a multilayer
perceptron. It is the overall outpfithat we seek to estimate.denotes a transfer function (from
the hidden to the output layer far, from the input to the hidden layer far;). u andv denote
ANN weights;a andb, ANN biases. The size of each network layer in units is denbtefl or
O, for input, hidden, and output layers, respectively. Finally, the superscaper any function,
parameter, or size variable indicates that it belongs to expert or spenialistsome ways, this
characterization of a mixture model is more specific than the previous two (it restricts the
learning architecture to a probabilistic networla feedforward ANN in the above mathematical
definition). It is, however, also morgeneral because it permits a general, possibly nonlinear,
form for the fusion mechanism (rather than forcfrtg be a linear combination dfvalues).

59

The problem of data fusion, in the context of composite learning for time series, can naturally
be interpreted as one of mixture modeling. Each expert is a probabilistic network trained on
some intermediate target concept, which was formed by attribute partitioning and problem
redefinition (e.g., competitive clustering). This unsupervised learning phase is described in
Chapter 2. The particular expert (architecture and training) used is determined using metric-
based model selection on the resulting subproblem definition and a database of available
components. The overall organization of the mixture model is also selected by metric-based
analysis. The entire analytical step is described in Chapter 3. The selected experts are trained,
resulting in classifiers that map subsets of the input to intermediate predictions. In time series
learning, training data is typically a sequencehidtorical observationsof the data, and the
predictions are made oncantinuationof this input [GW94]. Section 1.1 and Chapter 5 describe
synthetic and real-world experiments on time series prediction using this paradigm. Both
“laboratory” applications (where continuations are simulated or have been previously collected
and buffered) and “field” applications (where the new input data is collected online, and learning
occurs during this collectiohonform to the paradigm [GW94]. This dissertation considers both
modes of time series analysis but focuses on learning in the offline mode and application of the
performance element (classification fitimgnostic monitoringnd prediction) in the online mode.

4.1.2 Combining Classifiers for Decomposable Time Series

To understand how mixture models are used in inductive concept learning from time series,
let us interprety; as a 1-of-C-coded output vector from eachrno€lassifiers. These may be
decision structures (trees, lists, regression splines, etc.), genetic classifiers) thre scope of
this research- Bayesian and artificial neural networks. We wish to weight these classifiers to
produce the target predictiopy an overall classification for the observed inputs. In general
concept learning by mixture models, all inputsare presented to each subnetwork during
training, and the trained network is treated as the clasdjfieBased upon the attribute-driven
problem decomposition method of Chapter 2, | emend thissibsetof x. This is depicted ago,

in Figure 6. The outputs of specialists qmedictedvalues, Y, of yon (Which denote the actual

values, or desired output). Thesg,, values are passed on as input to moderators at the next

level, as depicted in Figure 6.

" This is also known asituated[RN95], lifelong [Th96], orin vivo [WS97] learning.

60

The complete input for a moderator includes (at least) the inputs to all of its descendants and
the predictions of its children. It is important to note that, although the specialists are trained
concurrently, they are not necessarily trainedependentlyspecifically, HME is a multipass
algorithm that iteratively updates the weights of gating and expert subnetworks. The classifier
produced by this interleaved training algorithm still operates in similar fashion (a single, bottom-
up pass) in the performance element (also referred teeeall modein the ANN literature)
[PL98]. SM networks, by contrast, train subnetworks in a single bottom-up pass, so that all

specialists or intermediate-level moderators are used to generate predictionsy once.

The mixture model thus refers to the function that maps mixture components to overall
outputs. In connectionist (probabilistic network) learning, however, this term is informally
extended to include the learning algorithm for weights. As the third definition shows, the
subordinate models (including moderators) may be self-contained learning architectures.

Thus, when | refer to “combining models”, three definitions (the first two informal; the third,
formal) apply:

1. Combining subnetworks The mixture model expresses weights on the outputs of each
subnetworlon each exemplaafter training

2. Classifiers. A classifier is the performance element for which a probabilistic network
can acquire knowledge, in the form of decision structures, rules, etc. In the heuristic
classification framework of this dissertation, a classifier is fully described by the values
of network parameters after training. The mixture model expresses weights on the outputs
of each classifieon each exemplar

3. Predictions. The mixture model expresses weights on predictions of the model on each
exemplar. The predictions are the elements of the subpopulations for which mixing
coefficients are being estimated relative to an overall distribution.

The next two sections defingartitioning and aggregationmixtures, two general types of
mixture models that are exemplified by HME and SM networks.

4.2 Composite Learning with Hierarchical Mixtures of Experts (HME)

This section presents the HME architecture and discusses its adaptation to multi-strategy
learning, as amntegrativemethod. HME is one of two mixture models that may be selected in

61

my composite learning system. | review existing learning procedures for HME, consider how
alternative optimization techniques (such as Markov chain Monte Carlo algorithms for Bayesian
learning [Ne96, Jo97a]) may be applied, and discuss the incorporation of these methods into the
“repertoire” of learning techniques presented in Chapter 3.

4.2.1 Adaptation of HME to Multi-strategy Learning

J11 U2
Gating —| |_ Gating
Network Network
J21 J12
< Ix
Y11 Y12 Yo1 Y2
Expert Expert
Network Network
A A A A
X X X X

Figure 7. A Hierarchical Mixture of Experts (HME) network

Figure 7 shows an HME network of height 2, with branch factor 2 (i.e., 4 expert networks at
the leaves). Note that the expert and gating networks all receive the same input x. Equally
important, the target output valugg, for level | and (gating or expert) network are also
identical.

Traditional HME uses a tree-structured networkgsneralized linear model§GLIMSs), or
fixed, continuous nonlinear functions with linear parameters [MN83]. The class of GLIMs
includes single layer perceptrons with linear, sigmoidal, and piecewise linear transfer (activation)

functions; these implement regression models, binary classification models, and hazard models

62

for survival analysis, respectively [JJ94, Ne96]. GLIMs of the type listed above are used at the
leaves of the network asxpertsubnetworks in the mixture. The mixing is implemented by
gating GLIMs that combine expert network outputs.

In place of GLIMs, | use general feedforward networks with nonlinear (sigmoidal or
hyperbolic tangent) or piecewise linear input-to-hidden layer transfer functions and linear hidden-
to-output layer transfer functions. The purpose of this modification is to permit an arbitrary
fusion function to be learned. | will refer to this function, which is implemented by all of the
interior (moderator) subnetworks as a whole, awigture function As Kohaviet al [KSD96]
point out, however, mixture functions that aret linear combinations of the input (i.e., those that
do not have the same mixing coefficients for any input data) are semantically obscure.
Furthermore, the real issue is not the ability to fit a mixture perfectly, because (just as in general
concept learning) it is always possible to learn by rote if there are sufficient model resources. The
true criterion isgeneralizatiomquality. In general concept learning as well as mixture modeling,
we can evaluate generalization by means of cross validation methods [Ri88, W092]. The upshot
of these considerations is that some discretion is essential when we undertake to use a general

mixture function instead of a linear gating or fusion model.

Finally, in order to adapt HME talecompositiorof time series learning problems, it is
necessary to commit a crucial change to the construction. Specifically, the inputs to experts (at
the leaves of the tree-structured network) aanidentical Chapter 2 describes attribute
partitioning algorithms that split the input data along “columns”. Each expert receives the data
corresponding to a single subset of input attributes (i.e., the columns or channels specified by that
subset), and each gating network receives as inputs the concatenation of inputs to each expert and
the normalized output from each expert. The target outputs at every expert and gating level are
identical to one another and to the overall target. In the current implementation, only SM
networks use the reformulated targets from clustering; Chapter 5, however, documents
experiments with both clustered and non-clustered intermediate concepts. Thus, a training
exemplar is a set of subnetwork outputs, concatenated with the total input to all experts in the
domainof the moderator (i.e., the subtree rooted at that moderator). Training a moderator means

revising its internal weights to approximate a mixture function.

63

4.2.2 Learning Procedures for Multi-strategy HME

HME networks are trained using anterleavedupdate algorithm that computes the error
function at the topmost gating network and propagates credit down through the hierarchy, on
every top-down pass (a single trainiegoch). This generic procedure can be specialized to
expectation-maximization (EM), gradient, and Markov chain Monte Carlo (MCMC) learning
algorithms.

Jordan and Jacobs studied EM-based learning in HME networks [JJ94]. The algorithm | use
to implement learning techniques under the “HME, EM” column of my database is partly based
the one described this paper. Gradient learning in HME is based on backpropagation of error
using a hierarchical variant of the delta rule described in Appendix B; the probabilistic
interpretation follows Bourlard and Morgan [BM94]. Finally, the MCMC method | use to
perform Bayesian learning is the Metropolis algorithm for simulated annealing. This global
optimization algorithm and its integration with hierarchical mixture models is also documented in

Appendix B.

4.3 Composite Learning with Specialist-Moderator (SM) Networks

This section presents the SM network architecture and discusses its adaptation to multi-
strategy learning, as antegrativemethod. The SM network, which was developed by Ray and
Hsu [RH98, HR98a], is one of two mixture models that may be selected in my composite learning
system. | review the construction of SM networks and, as for HME, consider how alternative
optimization techniques such as MCMC methods may be applied, and discuss the incorporation
of these methods into my database of models.

4.3.1 Adaptation of SM Networks to Multi-strategy Learning

Figure 8 shows an SM network with two layers of moderators. The primary novel
contribution is the model’'s ability to turn attribute-based learning task decomposition to
advantage in three ways:

1. Reduced variance On decomposable time series learning problems, SM networks exhibit

lower classification error than non-modular networks of comparable complexity. Chapter 5

64

reports results that demonstrate this in a manner very similar to that of Rueckl [RCK89] and
Jordaret al [JJB91].

2. Reduced computational complexity. Given a target criterion (desired upper bound on
classification error), SM networks require fewer trainable weights and fewer training cycles
to achieve convergence on decomposable problems.

3. Facility for multi-strategy learning . My experimental results on several test beds, both real
and synthetic, show that gains can be realized using specialisiffexent typeswithin the
SM network. These specialists are selected from the database documented in Chapter 3. The
experimental findings are presented in Chapter 5.

Yo1=Y11XY12

Moderator _
€ Xo1 = X112 Xqp

Network

Y1 = Y12 = Y03* Yos
Z N\

Moderator Moderator
| Network Network |
12 = Xoz° Xo4

Xll = X
Yos Yoa

Specialist Specialist
Network Network
A A
Xo3 Xo4

Figure 8. A Specialist-Moderator (SM) network

The main practical distinction between SM networks and HME are the ways in which each
one achieves reduced variance and reduced computational complexity. SM networks trade more
rapid growth in complexity for increasedesolution capabilityand reduction oflocalization
error. By exploiting differences among the problem definitions for each subnetwork, an SM
network can distinguish among more concepts than its components, and to achieve higher

classification accuracy than a comparable non-modular network. In time series learning

65

applications such as multimodal sensor integration, this localization error may be reduced in
space or time [JJB91, SM93].

The construction of SM networks allows arbitrary real inputs to the expert (specialist)
networks at the leaves of the mixture tree, but constructs higher level input and output attributes
based upomy; (see Figure 6). This is one of the two main differences between SM networks and
HME. The other is that training of the specialist-moderator network proceeds in a single bottom-
up pass (i.e., a preorder traversal), while HME networks are trained iteratively, in a top-down
fashion (i.e., one post-order travergar training cycle during the M step of EM). These
algorithms can also be considered as proceeding in a breadth-first order: bottom-up for the
specialist-moderator network, multiple up/down (estimation/maximization) passes for HME
[JJ94]. The construction algorithm for SM networks is as follows:

Notation
D training set a;° specialist part of inputat|
A set of input attributes a;" moderator part of inputat|
B set of output attributes B complex output attribute vector at
F constructive induction algorithm by complex output attributpat |
n number of exemplars X reformulation of ¢“, ...,x™) by a;
x¥ input vectori (a set of vectors)
yo output vectoii Vi reformulation of ¢V, ...,y™) by by
x" valuej in input vectori fi S-M networkj at levell
y» valuej in output vectoii N; number of children of;
I number of input channels I number of inputs tdy
O number of output channels Oy number of outputs frorfy
H height of the S-M tree S[j] startindex for children of moderator
N number of networks at levél fi
A complex input attribute vector &t E[l] endindex for children ofj

a; complex input attributg at|

66

Given:

1. Atraining seD = (x®, yh, ..., x™, y™)) with input attributesA = (ay, ..., a) such that x©

=", ..., x9)

2. Aconstructive induction algorithfa such that(A, B, D) = (Ao, Bo)

3. N;forl<l<H,1<j< N, (precomputed by dynamic programming)

Algorithm SM-net:

UsingF on A andD, deriveAq = (aoy, .-, Ao,) andBy = (boy, ..., bONO).

Let (xo™, ..., x"™) be the new representation of the input data uddemwherexq®: x¥ :: ay : A

Let (o', ..., yo™) be the new representation of the output data uBdewhereyo: y© :: by : B

Train networksfoy, .., foy_), using training inputso” and desired outputg,” for specialistf,

for | :=1toH
for j:=1toN
j-1
Sl = z N, +1
k=1
EG :=S0l +N-1
a;° := NULL
x;° := NULL
" := NULL
x; := NULL
by := UNIT
Vi := UNIT
fork :=§[j] toE[j]
aljs = aljs ° brak
anM = ale o al-l,kM
by = by x by
fori:=1ton
xS 1= x, 08 0y O

le(i) M = le(i) M o Xl-l,k(i) M

y.,-“’ = y.,-“’ % yl-l,k(i)
ay =" ay"
fori :==1ton

X 1= %, 0S © 3, OM

// bottom-up

/I start index

/I end index

II'NULL ° a.1x = au1k
/I NULL ° Xp.1x = X1
/I NULL ° b3k =bik
/I NULL ° Vi1 =Yk
/I UNIT x by.qx = by
/I UNIT X Vi1 k= Yk

I specialist part
/I moderator part

/I new output attribute
/I new input (S)

/I new input (M)

/l new output

/I new input attribute

/I new input

67

Train moderator network; with
Xj = (le(l)’ ey le(n)) and
yi = 0 v ™)

return (f01, cey fONO’ ...,fH]_)

SM-net thus produces networks such as the one depicted in Figure 8. Network complexity is
measured in the number of weights among generalized linear units in an ANNnet produces
moderator networks whose worst-case complexity is the product of that of their children. This
growth is limited, however, because the tree height and maximum branch factor are typically
(very) small constants. Relevant details of this combinatorial analysis appear in Appendix A.

Two determinants of the performance of an SM network are: the empirical likelihood of
finding efficient factorizations of a data sBt and the difficulty of learning this factorization.
The first quantity depends on many issues, the most important being the qualiy tbe
constructive induction algorithm. | consider the case where a Bewlalready known or can be
found by unsupervised learning methods, including knowledge-based constructive induction
[Be90, Do96] and attribute-driven problem reformulation (e.g., subset selection [Ko95, KJ97] and
partitioning). To address the second issue experimentally, | demonstrate that the achievable test
error on efficient factorizations learned with an SM network is lower than that of non-modular

feedforward or temporal ANNs (of comparable complexity) trained with the original data.

4.3.2 Learning Procedures for Multi-strategy SM Networks

SM networks are trained using a single-pass algorithm for updates in the overall network.
That is, many training cycles or individual epochs (batch updates for backpropagation, EM steps,
or candidate state transitions in MCMC learning) occur in order to complete the training for one

subnetwork.

Gradient learning in SM networks was introduced in [RH98] and [HR98a]. The algorithm |
use to implement learning techniques under the “SM, gradient” column of my database is based
on this one. As does HME, SM also admits EM and MCMC learning for certain specialist
architectures. Appendix B gives technical details of these implementations; Chapter 5, some

important experimental results using these implementations.

68

4.4 Learning System Integration

The overall design of both hierarchical mixture models | have addressed here (modified HME
and SM networks) is the result of a concurrent engineering process. The data fusion methodology
complements the first two phases of my learning systepmoblem reformulation and multiple
model selection. Based on an attribute-driven decomposition of a given time series learning
problem, the mixture model muslistribute the workloadn a manner most appropriate to the
characteristics of the data (as reflected in the way the problem was divided). Model selection not
only chooses the specialist or expert network types independently for each subproblem, but also
selects the most appropriate type of mixture model and training algorithm for the entire problem
(i.e., all specialist and moderator subnetworks) as a function of the whole partition. It also
provides feedback for the partition search, in order to limit the number of mixture models that are
applied and eliminate the “bad splits” that do not balance the work evenly enough across mixture
components. This section addresses the definition and utilization of “good splits” and the
recognition of bad ones.

4.4.1 Interaction among Subproblems in Data Fusion

The objective of mixture modeling, according to Section 4.3.1, is to reduce variance and
computational complexity and to facilitate multi-strategy learning. In order to reduce both
variance (classification errorland complexity (required convergence time and network
complexity), a reformulation of the problem must be exploited [Mi80, Be90, Hr92]. The solution
| present through the modified HME and SM algorithms is to distribute the workload by
maximizing the computational gain from specialists or experts (i.e., doing more of the work of
learning at the lowest levels). This automatically reduces the difficulty ofrixéure estimation
task [DH73, CKS+88, JJ94]. The cost of this improvement is that the interaction among mixture
components must be modeled. This is discussed in Section 3.4 and Appendix C.

4.4.2 Predicting Integrated Performance
Section 3.4.3 documents a combinatorial measure fémtorial interaction and an
information theoretic measure for probabilistic interaction that give rise, respectively, to the

prescriptive metrics for SM networks and HME. In order to estimate the overall performace for a

mixture model on an entire partition (without knowing in advance what the specialist and

69

moderator types are), these metrics must account for the precise mode of interaction that is
exploited by the mixture. Appendix C documents the derivation of these distributional metrics.

4.5 Properties of Hierarchical Mixture Models

This section concludes the presentation of the HME and SM networks and the data fusion
phase of composite learning. First, | list the criteria for network complexity and explain its
relevance to performance evaluation as documented in Chapter 5. Second, | discuss how variance
reduction is achieved in hierarchical mixtures and how this can be evaluated.

4.5.1 Network Complexity

To test the hypothesis that hierarchical mixtures reduce network complexity for
decomposable learning problems, | first define a measure of complexity and identify other figures
of merit for learning performance. These shall be held constant relative to network complexity
(or vice versa). ANN, HMM, and Bayesian network complexity can all be defined in (slightly
different) terms of graph complexity: that is, the number of trainable weights. The simplest
measure for ANNs is the total number of connections between successive hidden layers (bipartite
graph size in edges), plus the sizes of layers with bias parameters (bipartite graph size in vertices).
For Bayesian networks, complexity grows exponentially with the number of values of an attribute
as a base and the number of parents for a vertex (denoting a random variable) as an exponent.
Network complexity is just one measure of performance. Classification accuracy on test input is,
of course, an essential standard, and convergence time and number of exemplars needed to reach
the target accuracy is also important in situated learning. My first method for evaluating the
performance of a model is to set a target classification accuracy and compile the learning curves
[Ka95] (accuracy versus training cycles for different numbers of exemplars) and complexity
curves (accuracy versus training cycles for different numbers of trainable parameters). An
alternative, when the achieved accuracies for the models being compared are far apart, is to plot

them given fixed network complexity and training time.

4.5.2 Variance Reduction

Variance reduction in mixture modeling is achieved by combining multiple classifiers.
Recent research has shown how inductive learning algorithms can be augmeatggtdgyation
mixturessuch as bootstrap aggregation fagging [Br96], stacking[Wo92], and SM networks
[HR98a, RH98], and bypartitioning mixturessuch asboosting [FS96] and HME [JJ94].

70

Aggregation uses (independent) differences in sampled input as given to each expert to estimate a
mixture (by voting in bagging; by a mixture function in stacking). Partitioning mixtures are
multi-pass and adjust the sample weights during learning.

71

5. Experimental Evaluation and Results

This chapter documents the evaluation of the time series learning system through experiments
on both synthetic and real-world data sets. First, | present a learning test bed (wide-area crop
condition monitoring) that demonstrates how time series can be heterogeneous, and how a
hierarchical mixture model can be used to improve learning. This finding leads to further
experiments on model integration and decomposition of learning tasks by attribute-driven
constructive induction. Second, | report on experiments with synthetic data sets (corpora) that
test the effectiveness of metrics for model selection. These synthetic corpora and two real-world
corpora are used to calibrate the normalization model for metrics. Third, | document
improvements to classification accuracy and learning efficiency based on attribute partitioning. |
first report on performance gains as achieved through exhaustive enumeration of partitions — then
examine the tradeoff between accuracy and efficiency when heuristic search is used. Fourth, |
compare the performance of the integrated learning system to that of other mixture models and

non-modular inductive learning techniques.

5.1 Hierarchical Mixtures and Decomposition of Learning Tasks

This section presents the results of experiments using hierarchical mixture models on time
series with varying degrees of decomposability (see Section 1.4.3).

5.1.1 Proof-of-Concept: Multiple Models for Heterogeneous Time Series

The experiments first used to demonstrate heterogeneity in time series for this research were
conducted using a real-world data set calleddtwe condition monitorindest bed. This test bed
was developed specifically to demonstrate non-Markovity and heterogeneity in time series
[HR98a, HGL+98].

Figure 9 depicts an (atemporal) spatially referenced data set for diagnopi®edision
agriculture The inputs are: yield monitor data, crop type, elevation data and crop management
records; the learning targetause of observed low yie(d.g., drought). Such classifiers may be
used inrecommendesystems [RV97] (also calledormativeexpert systems [He91]) to provide
decision support for crop production planning in subsequent years. | collected biweekly remote
sensing images and meteorological, hydrological, and crop-specific data for learning to classify

72

influents ofexpected crop qualitgper farm) alimatic (drought, frost, etc.) onon-climatic(due

to crop management decisions).

I ||||I,|,1|1 —
W the seed population

Lo iy I.'I'.""

I\-"-"ill.'.'l'-ltl|'||i|"|||i_-;|; Er-::l'_lh_' ||'_J5I

Lasw-yreld spot—

. : IJ_I“"_Til.':l:i Spat =
Were the ol il

Was the 1 .||.|.:;|,'

i e
applieed ine r '
pplied incorrectly? atvadegy right?

Lenw spat in the Geld —
" g L T]
s mesn

13l it et the Fighs

s '.|||'i|.'I:_'\|'.:I

Syms of weed pressine?
Wis the herbicide effoctive?

Ardars Somn by Budhors

Anders Farm (27.8 acres) L] Teasenn
Forg yield: 136.8 bufacre WTHE b 141
Field Corn B 12810 135

T1¥ o128
| B3t 117
L] 0o

Copyright © 1996 AFS, Inc.

Figure 9. An agricultural decision support expert system

Figure 10 contains bar charts of the mean squared error from 125 training runs using ANNs
of different configurations (5 architectures, 5 delay constant or momentum values for gradient
learning, and 5 averaged runs per combination). On all runs, Jordan recurrent networks and time-
delay neural networks failed to converge with momentum of 0.99, so the corresponding bars are
omitted. Cross validation results indicate that overtraining on this data set is minimal. As a
preliminary study, | used a gamma network to select the correct classifier (if any) for each
exemplar from among the two best overall networks (input recurrent with momentum of 0.9 and
TDNN with momentum of 0.7). The error rate was reduced by almost half, indicating that even
with identical inputs and targets, a simple mixture model could reduce variance. These results are

depicted in Figures 11 and 12.

This experiment illustrates the usefulness of learning task decomposition over heterogeneous
time series. The improved learning results due to application of multiple models (TDNN and IR
specialists) and a mixture model (the Gamma network moderator). Reports from the literature on
common statistical models for time series [BJR94, GW94, Ne96] and experience with the (highly

73

heterogeneous) test bed domains documented here bears out the idea that “fitting the right tool to

each job” is critical.

Final Training Error for 5 Runs of Corn Condition, 1985-1995
0.2+
0.18+
Momentum or
0.164 Time Constant
0.14-]
S 0.2 m0.7
g 01 mO0.8
6 0.08- 0.9
¢ .
0.041 M 0.99
0.02]
0,
Elman Jordan Input TDNN Backprop
Network Architecture

Figure 10. Performance of different learning architectures for crop condition monitoring

Training Accuracy for Corn Condition 1985-1995,
Gamma Network Moderator
100

98 i

96- B Moderator
o)
o B B TDNN
5 944 1 I — Specialist
o))) oR
f = Specialist
c 924
(O]
8)
(O]
o 90

88

86

1 2 3 4 5 6 7 8 9 10 11
Year Number

Figure 11. Training results for partitioned HME with gradient learning

74

Cross Validation Accuracy for Corn Condition 1985-1995,
Gamma Network Moderator

O Moderator
ey
© ETDNN
8 Specialist
<L(> OIR
2 Specialist
7]
o
et
7]
o

1 2 3 4 5 6 7 8 9 10 11
Year Number

Figure 12. Cross validation results for partitioned HME with gradient learning

Research that is related to this dissertation [WS97, HGL+98] applies this methodology to
specific problems in diagnostic monitoring for decision support rezommendgr systems
[RVI7].

5.1.2 Simulated and Actual Model Integration

Figure 13 visualizes a heterogeneous time series. The lines shown are phased
autocorrelograms or plots of autocorrelation shifted in time, for (subjective) weekhpp
conditionestimates, averaged from 1985-1995 for the state of lllinois. Rattt represents the
correlation between one week's mean estimate and the mean estimate for a subsequent week.
Eachline contains the correlation between values for a particular week and all subsequent weeks.
The data is heterogeneous because it contains both an autoregressive pattern (the linear
increments in autocorrelation for the first 10 weeks) and a moving average pattern (the larger,
unevenly spaced increments from 0.4 to about 0.95 in the rightmost column). The autoregressive
process, which can be represented by a time-delay model, expresses weather “memory”
(correlating early and late drought); the moving average process, which can be represented by an
exponential trace model, physiological damage from drought. Task decomposition can improve
performance here, by isolating the AR and MA components for identification and application of

75

the correct specialized architecture (a time delay neural network [LWH90, Ha94] or simple
recurrent network [EI90, PL98], respectively).

—— Week 4
-=—Week5
Week 6
1.2 Week 7
—+—Week 8
-»—Week 9
—— Week 10
— Week 11
——Week 12
Week 13
Week 14
Week 15
Week 16
Week 17
Week 18
Week 19
—— Week 20
Week 21
Week 22
Week 23
Week 24
—— Week 25
—x— Week 26
L0 L B e B B B T e e e B S S B - Week 27
4 5 6 7 8 9 101112 13141516 17 18 19 20 21 22 23 24 25 26 27 28 29 | —— Week 28
—— Week 29

Phased Autocorrelogram of Corn Condition, 1985-1995

0.8 A

0.6

Correlation

0.4

0.2

Week of Growing Season

Figure 13. Phased autocorrelogram (plot of autocorrelation shifted over time)

for crop condition (average quantized estimates)

Figure 14 shows a single line of this autocorrelogram plotted against a correlogram
between predicted and actual values for crop condition. 26 temporal ANNs (all of the input
recurrent type) are trained to produce this plot. The first 25pmeelictor ANNSs, trained to
predict inputX(t + k) from X(t), 1<t < 25, 1< k< 25. | then train a single input recurrent ANN to
mapX(t + K) to a discrete predicted value ¥t + k). This could also be a nominal class such as
{very poor, poor, fair, good, very gogdwhich is the learning target in Figures 2 and 3. We can
think of this asa predictive evaluationor simulation model. The plot shows that recurrent
ANNs can be expected to outperform linear prediction methods (and certainly outperform naive
linear or quadratic regression, which invariably predicts no change in the condition from one
week to the next) in the “middle to distant future”. This is important because the utility of near-

term predictions tends to be lower for decision support systems [RN95].

76

Prediction using Weeks 1-11

—e—SRN
—=— Original

1 3 5 7 9 11 13 15 17 19 21 23 25

Figure 14. Predictive simulation for crop condition, using precipitation, temperature,
working days, and maturity level up to Week 11, inclusive

5.1.3 Hierarchical Mixtures for Sensor Fusion

This section documents a sensor fusion experiment as applieddizal tune classification
First, | explain the choice of an experimental testbed for the moderator network. In my
experiments using hierarchical mixtures, | focused primarilglassificationof time series. The

reasons for this restriction are that:

1. Classification of signals from multiple sources (sensor modalities, transforms, etc.)
showcases the data fusion capabilities of the architecture, and can be used to benchmark the
learning algorithm in comparison to other methods for multimodal integration (usually of
predictions on time series).

2. Signal processing can be used to synthesgigethe reformulated input attributes; such
preprocessing methods are well understood [Ha94]. | discuss the experimental usefulness of
this facility below.

3. Simple conceptual clustering can then extract the equivalence classes (e.gk-m&ags
clustering or other vector quantization methods such as competitive ANNS).

77

My architecture thus addresses one of the key shortcomings of many current approaches to
time series learning: the need for an explicit, formal model of inputs from different modalities.
For example, the specialists at each leaf in the SM network might represent audio and infrared
sensors in a industrial or military monitoring system [SM93]. The SM network model and
learning algorithm, described in Chapter 4, capture this property by allocating different channels
of input (collected in each complex input attribute) to every specialist. Other models that can be
represented by SM architecture are hierarchies of decision-making committees [Bi95].

| used both simple feedforward ANNs (multilayer perceptrons) and simple recurrent networks
(SRNs), both trained by gradient learning (error backpropagation). For more information on
SRNSs, also known as autoregressive models or exponential trace memories, | refer the interested
reader to [MMR97] and [PL98]. Recurrent feedback allows temporal information to be extracted
from different subsets of a multichannel time series. More important, it allows this information to
be recombined (i.e., a composite or higher-level classifier to be learned), even when the temporal
attributes do not “line up” perfectly. | tested the Elman, Jordan, and input recurrent varieties of
SRNs [EI90, PL98], and found the input recurrent networks to achieve higher performance
(accuracy and convergence rate) for exponentially coded time series, both alone and as part of the

specialist-moderator networks.

In time series learning, preprocessing of input signals is the typical method of reformulating
the input attributes [Ha94]. The experimental learning task was classification of (preprocessed)
digital audio sequences. For this purpose, a database of 89 stylized musical tunes was
synthesized, each containing 3-6 segments or “words” from an identifiable class (e.g., falling
tone, rising tone, flat tone, etc.) delimited by silence (2-5 gaps). The tunes belong to 16
predetermined overall concept classes, factorizable into 4 equivalence clafsegiefcyand 4
of rhythm Figure 15 shows this factorization. The learning task was to identify the overall
concept class (among 16), given a preprocessed, multichannel frequency and rhythm signal. The
training data consists of 73 tunes, with one randomly selected exemplar of each class being held
out to obtain 16 cross-validation tunes. The numbers inside each circle in Figure 15 show the
number of members from the overall 89-tune data set that belong to each class.

The input data was generated as follows. First, digital audio was recorded of the tunes being
played by one of the authors. These samples were preprocessed using a simple autocorrelation

78

technique to find a coarse estimate of thedamental frequendBMB93]. This signal was used

to produce thefrequency componentin exponential trace of a tune over 7 input channels
(essentially, a 7-note scale). The other group of input attributes ighiytam component
containing 2 channels: the position in the tune (i.e., a time parameter ranging from 1 to 11) and a
binary sound-gap indicator.

Figure 15 depicts non-modular and specialist-moderator architectures for learning the musical
tune classification database. The non-modular network receives all 9 channels of input and is
trained using the overall concept class. The first-level (leaf) networks in the specialist-moderator
network receivespecializednputs: the frequency component only or the rhythm component only.
The concatenation of frequency and rhythm components (i.e., the entire input) is given as input to
the moderator network, and the target of the moderator network is the Cartesian product of its
children's targets. Learning performance for these alternative network organizations is shown in
Figure 16. Appendix A.3 documents some combinatorial properties relevant to this construction
and this experiment.

R1|] R2|] R3 || R4
@OG|®
TF
(Feedforward 16C
@]/K2]19]|(G; or Simple —
2R Recurrent
Problem Factorization by Simple (Non-Modular)
Frequency and Rhythm Artificial Neural Network

41,

7F
e | Frequency

16C = 4l x 4l

Moderator
=, ST g
T Specialist-Moderator
7E ° 2R Network

Figure 15. Organization of the musical tune classification experiment

79

Performance of Non-Modular, Specialist-Moderator
Networks, and HME on Musical Tune Classification

100+
90+
80
70
60 @ Training
50 ECV
40
30+
20
104

Percent
Correct

0_‘
NS > &
& & & o« SR PN N & °
e ¢ Q& N S S S >
6“(&\ &e& o 5@"&0 o S o DO
< QS «® Y RN

Network Type

Figure 16. Performance (classification accuracy) of learning systems

on the musical tune classification problem

5.2 Metric-Based Model Selection

This section presents results that illustrate the benefits of metric-based for model selection
and compare with to other quantitative methods (such as naive enumeration of learning
configurations).

5.2.1 Selecting Learning Architectures

Figure 17 depicts a plot of the TDNN architectural metric curve for a series of 10000
independent, identically distributed, Uniform (0, 2) random variables. | use a discrete uniform
distribution as a baseline because the unconditioned entropy is maximized. The variables are iid
(an “order-0 Markov process”) to provide a baseline for memory forms in time series learning.
The definition of, and rationale for, the convolutional-code based metric for TDNNs, SRNs
(specifically, input recurrent networks), and Gamma memories is given in Appendix C. As we
would expect, the conditional entropy drops to nil as the number of delay lines goes to about 11
(i.e., with a window “depth” of 11, any sequence can be uniquely identified — note that this does
not tell us what the generalization capability will be). The value for 0 delay lines is about Ig(3) *
10000, also as expected.

80

18000

16000

14000

12000

10000

8000

6000

4000

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 17. TDNN architectural metric for 10000 i.i.d. Uniform (0, 2) data points

5.2.2 Selecting Mixture Models

Figure 18 shows the classification accuracy in percent for moderator output for the concept:

documented in Appendix D. All mixture models are trained using 24 hidden units,
distributed across all specialists and moderators. When used as a heuristic evaluation function for
partition search, the HME metric documented in Appendix C finds the best partition for the 5-
attribute problem (shown below) as well as 6, 7, and 8, with no backtracking, and indicates that
an HME-type mixture should be used.

81

120
100
80
Fused
Max
60 Fused
Min
40 = Fused
Average
20
0
1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49 52

Figure 18. Min-max-average plot of classification accuracy

for a partitioned, 5-attribute modular parity problem

5.3 Partition Search

This section presents the results for the attribute partition search algorithm given in Chapter 2
and for which an evaluation function is derived in Appendix C.

5.3.1 Improvements in Classification Accuracy

This section documents improvements in classification accuracy as achieved by attribute
partitioning. Figure 19 shows how the optimal partition {{1,2,344,5}} for the concept:

parity(Xa, Xz, Xs) X parity(Xs, Xs)

as defined in Section 5.2.2 achieves the best specialist performance for any size-2 partition.

82

Mean Classification Accuracy of Specialists for a
Partitioned 5-Attribute Modular Parity Problem

90+

80

70

60

percent 29

Accuracy ,q |
30+
20+

10+

O,A
Partition

O Series1

O Series3

M Series5

M Series7

M Series9

O Series11
M Series13
M Series15
O Series17
O Series19
O Series21
O Series23
M Series25
O Series27
O Series29
M Series31
M Series33
M Series35
M Series37
M Series39
M Series41
M Series43
M Series45
M Series47
M Series49
M Series51

B Series2

O Series4

O Series6

O Series8

B Series10
O Series12
M Series14
M Series16
0O Series18
O Series20
O Series22
O Series24
O Series26
O Series28
[Series30
O Series32
M Series34
B Series36
B Series38
B Series40
0O Series42
[Series44
O Series46
O Series48
B Series50
M Series52

Figure 19. Specialist performance for all possible partitions of a 5-set

Mean Classification Accuracy of Moderators for a
Partitioned 5-Attribute Modular Parity Problem

Percent
Accuracy

Partition

@ Series1

O Series3

M Series5

W Series7

M Series9

O Series11
M Series13
B Series15
@ Series17
0O Series19
O Series21
O Series23
W Series25
O Series27
@ Series29
W Series31
M Series33
M Series35
W Series37
B Series39
M Series41
M Series43
M Series45
W Series47
M Series49
M Series51

M Series2

O Series4

@ Series6

O Series8

M Series10
O Series12
M Series14
M Series16
O Series18
O Series20
O Series22
O Series24
[Series26
O Series28
M Series30
[Series32
W Series34
M Series36
M Series38
M Series40
O Series42
[Series44
O Series46
O Series48
M Series50
H Series52

Figure 20. Moderator performance for all possible partitions of a 5-set

Figure 20 shows how this allows it to achieve the best moderator performance overall.
Empirically, “good splits” (especially descendants and ancestors of the optimal one, i.e., members
of its schema [BGH89]) tend to perform well.

5.3.2 Improvements in Learning Efficiency

Partitioning MMI FS Peak MMI Peak FS
Runtime (s) Runtime (s) Runtime (s) Memory (KB) Memory (KB)
0 1 1 1 1 1 1040 1040
1] 2 1 1 1 1050 1040
21 4] 2 1 1 1 1060 1040
3| 8 5 2 1 1 1070 1040
4| 16| 15 4 1 1 1080 1040
51 32 52 16 1 2 1100 1100
6 | 64| 203 77 4 5 2200 1200
7 | 128| 877 391 10 21 8600 1600
8 | 256| 4140 2154 28 ~40 31000 2800
9 | 512 21147 13454 87 ~80 91600 20000
10 |1024 11597p 98108 281 ~1500 374000 ~3000q0

Table 4. Empirical performance statistics (time/space complexity)

for metrics and (naive) partition search

Table 4 shows the problem size, runtime, and memory consumption for the distributional
metrics, documented in Appendix C.2.1. The MMI metric is the evaluation function for partition
search. These values are graphed in Figure 21.

84

1E+22
1E+21 -
1E+20 -
1E+19 -
1E+18 -
1E+17 -
1E+16 -
1E+15 -
1E+14
1E+13 -
1E+12 -
1E+11 -
1E+10 -
1E+09 -
1E+08 -
1E+07 -
1E+06 -
100000 -
10000 -
1000 -
100 -

——n
—&— 2%
10**n
B n
—— Naive Partitioning
Runtime (s)

—e— MMI Runtime (s)

——FS Runtime (s)

1- T T T T T

12 3456 7 8 9 10111213 141516 17 18 19 20

Figure 21. Logarithmic graph of problem size and running time
(attribute parttitioning and distributional metrics)

5.4 Integrated Learning System: Comparisons

This section concludes the presentation of experimental results with comparisons to existing
inductive learning systems, traditional regression-based methods as adapted to time series
prediction, and non-modular proliligtic networks (both atemporal and ARIMA-type ANNS).

5.4.1 OtherInducers

Table 5 lists performance statistics (classification accuracy and running time) using atemporal
inducers such atD3, C5.0 Naive Bayes)BL, and PEBLSon the corn condition monitoring
problem (babycorn data set) described in Section 5.1.1. The darkly-shaded rows in Table 5
denote partitioning mixtures, including theulti-strategqy HME model that | used (this
corresponds to the “HME, gradient” entry in Table 1 of Chapter 3). The lightly-shaded rows
denote aggregating mixtures (in this case, bagged versions of the atemporal inducers).

85

Classification Accuracy (%)

Min Mean | Max | StdDev| Min StdDev
ID3 100.0 | 100.0| 100.0 0.00 33.3 55.6 82/4 17.51
ID3, bagged 99.7 99.9 | 100.0| 0.15 30.3 58.2 | 88.2 | 18.30
ID3, boosted | 100.0 | 100.0 | 100.0 | 0.00 33.3 55.6 | 82.4 | 17.51
C5.0 90.7 91.7 93.2 0.75 38.7 58.7 81/8 14.30
C5.0, boosted| 98.8 99.7 | 100.0 | 0.40 38.7 60.9 | 79.4 | 13.06
IBL 93.4 94.7 96.7 0.80 33.3 59.2 73.5 11.91
Discrete
Naive-Bayes 74.0 77.4 81.8 2.16 38.7 68.4 96.[7 22.85
DNB, bagged | 73.4 76.8 | 80.9 2.35 38.7 70.8 | 939 | 19.63
DNB, boosted| 76.7 78.7 81.5 1.83 38.7 69.7 | 96.7 | 21.92
PEBLS 91.6 94.2 96.4 1.68 27.3 58.1 76(5 14.24
IR Expert 91.0 93.7 97.2 1.67 41.9 72.8 94(1 20.45
TDNN Expert 91.9 96.8 99.7 2.02 48.4 74.8 93.8 14.40
MS-HME 98.2 98.9 | 100.0| 0.54 52.9 79.0 | 96.9 | 14.99

Table 5. Performance of a HME-type mixture model compared with compared with that of

other inducers on the crop condition monitoring problem

86

Classification Accuracy (%)

Min Mean | StdDev | Max Min StdDev
ID3 99.4 99.4 0.09 99.6 46.6 63.4 5.67| 73.2
ID3, bagged 99.4 | 994 0.09 99.6 48.6 | 63.4 5.55 74.0
ID3, boosted | 99.4 | 99.4 0.09 99.6 53.4 | 66.6 4.85 83.6

C5.0 95.0 95.8 0.64 96.3 67.1 77.1 3.41 849
C5.0, boosted| 94.4 98.9 1.11 99.6 57.5 77.5 5.57 89

IBL 92.7 94.0 1.02 95.6 41.1 52.7 4.88 62.3
Discrete

93.8 95.6 0.78 96.3 41.1 59.6 4.79 67.11
Naive-Bayes

DNB, bagged | 93.4 94.6 0.79 96.3 479 | 60.8 4.19 67.1
DNB, boosted| 93.8 94.4 0.47 96.5 45.2 | 58.3 5.34 69.2
PEBLS 72.6 76.8 1.67 84.2 30.8 42.5 4.71 568
SM net, FF 74.9 74.9 0.00 74.9 60.2 | 60.2 0.00 60.2
SM net, IR 100.0 | 100.0 | 0.00 100.0 | 81.3 | 81.3 0.00 81.3

Table 6. Performance of an SM network mixture model compared with that of other

inducers on the musical tune classification problem

Table 6 lists performance statistics for the musical tune classification problem (S4 data set)
described in Section 5.1.2. The non-ANN inducers tested are all part dflitlae++ package
[KSD96].

5.4.2 Non-Modular Probabilistic Networks

This section summarizes the performance of the modified hierarchical mixture (specialist-
moderator networks of feedforward and input recurrent ANNs) used on the time series
classification problem as described in Section 5.1.2, as compared to non-modular regression
models (feedforward and input recurrent ANNSs trained by delta rule).

87

Network type Size (units per layer’ Number of weights ~ Max epochs

Simple (overall) 9-48-16 1200 4000
Rhythm Specialist 9-16%4 208 2000
Frequency Specialist 7-16-4 176 2000
Moderator (overall) 17-24-16 792 2000

Table 7. Design of non-modular and specialist-moderator ANNs

Table 7 shows the respective sizes of a feedforward ANN (see Figure 15) and the
components of a specialist-moderator network of feedforward ANNs, along with the number of
training cycles (epochs) allocated to each network. Note that the total number of learning weights
is about the same for the simple network and the entire specialist-moderator network (the last
three rows). Note also that the overall computational cost (as opposed to wall clock time) is
equalized, because the specialists can be trained concurrently. The same network sizes and
epochs were allocated for the SRNs and specialist-moderator networks of SRNs.

Design Network Training Training Accuracy CV CVv

Type MSE MSE Accuracy
Feedfwd.| Simple | 0.0573 344/589 (58.40%) 0.0728 67/128 (52.44%)
Feedfwd. Rhythm 0.071§ 534/589 (90.66%) 0.1530 104/128 (81.25%)
Feedfwd.| Frequency 0.0001 589/589 (100.0%) 0.0033 128/128 (100.0%)
Feedfwd.| Moderator| 0.0323 | 441/589 (74.87%) 0.0554 | 77/128 (60.16%)
Inputrec.| Simple | 0.0167] 566/589 (96.10%) 0.0717 83/128 (64.84%)
Inputrec.| Rhythm | 0.0653 565/589 (95.93%) 0.1912 107/128 (83.59%)
Inputrec.| Frequency 0.001% 589/589 (100.0p6) 0.0031 128/128 (100.0%)
Input rec.| Moderator| 0.0013 | 589/589 (100.0%) 0.0425 | 104/128 (81.25%)

Table 8. Performance of non-modular and specialist-moderator networks.

Table 8 shows the performance of the non-modular (simple feedforward and input recurrent)
ANNs compared to their specialist-moderator counterparts. Each tune is coded using between 5
and 11 exemplars, for a total of 589 training and 128 cross validation exemplars (73 training and

8 Even though cluster definition (to obtain the intermediate concepts, or classification targets, for the
rhythm specialist) was performed using only 2 attributes, experiments with attribute subset selection (in
addition to partitioning) showed a slight increase in performance as “frequency-relevant” attributes were
added. Therefore, all 9 attributes were used as inp@ufervised mode onlyo the rhythm specialists.

88

16 cross validation tunes). The italicized networks have 16 targets; the specialists, 4 each.
Prediction accuracy is measured in the number of individual exemplars classified correctly (in a
1-of-4 or 1-0f-16 coding [Sa98]). Significant overtraining was detected only in the frequency
specialists. This did not, however, affect classification accuracy for my data set. The results
illustrate that input recurrent networks (simple, specialist, and moderator) are more capable of
generalizing over the temporally coded music data than are feedforward ANNs. The advantage
of the specialist-moderator architecture is demonstrated by the higher accuracy of the moderator
test predictions (100% on the training set and 81.25% or 15 of 16 tunes on the cross validation

set, the highest among the learning algorithms tested).

Network Type Levels Weights Expert Fusion Epochs
HME, 4 leaves 2 1296 GLIM (tanh) GLIM (linear) 4000
HME, 8 leaves 3 1332 GLIM (tanh) GLIM (linear) 4000
S-M net, 2 leaves 1 1176 FF or IR FF or IR 4000

Table 9. Design parameters for HME and specialist-moderator networks.

Table 9 summarizes the topology of two hierarchical mixtures of experts | constructed for the
musical tune classification problem. Each is designed to have approximately the same network
complexity (number of learning parameters, i.e., expert and gating weights) as the specialist-
moderator network (which is shown in Figure 15 and is similar in type to those documented in
Chapters 3 and 4). The table also indicates what output nonlinearities are used. The HME design
above is consistent with that described by Jordan and Jacobs for regression problems. For
purposes of standardized comparison, however, | use a gradient learning algorithm (the same as
in all of the specialist-moderator networks) instead of the EM algorithm vighatively

reweighted least squar€BRLS used in Jordan and Jacobs's HME implementation [JJ94].

CV MSE CV Accuracy

Training MSE Training Acc.

HME, 4 leaves] 0.0576 387/589 (65.71%) 0.0771 58/128 (45.31%)
HME, 8 leaves 0.0395 468/589 (79.46%) 0.0610 77/128 (60.16%)
S-Mnet, FF | 0.0323 441/589 (74.87%)| 0.0554 | 77/128 (60.16%)
S-Mnet, IR | 0.0013 589/589 (100.0%)| 0.0425 | 104/128 (81.25%)

Table 10. Performance of HME and specialist-moderator networks.

89

As Table 10 shows, the HME algorithm with 8 leaves outperforms the version with 4 and is
comparable to the specialist-moderator network of feedforward networks. It is, however,
outperformed by the specialist-moderator network of input recurrent networks. This is significant
because incorporating recurrence into HME requires nontrivial modifications to the algorithm.
Equally important, | expect that a hierarchy of input recurrent expert and gating networks, with
identical outputs and the original input presented to each, would incur excessive overhead due to
its complexity. Given my uniform complexity restrictions, it would then be impractical to build a

3-level or even 2-level tree.

5.4.3 Knowledge Based Decomposition

In the musical tune classification problem, the intermediate targets are equivalence g¢lasses |
={Fy, F, F3, Fs}and Ir = { Ry, Ry, Rs, Ry }. This 4-by-4 factorization was discovered using
competitive clustering by Gaussian radial-basis functions (RBFs) [Ha94, RH98]. In this
experiment, the frequency and rhythm partitioningngfut is self-evident in the signal processing
construction, so theubdivision of inpuis known (note, however, that the intermediate targets are
notknown in advance). When the input subdivision is also unknown, autosatiget selection
methods can be used to automatically determine which inputsredegant to a particular
specialist [KJ97].

90

6. Analysis and Conclusions

This dissertation has presented: a wrapper system for decomposition of inductive time series
learning tasks by attribute partitioning; a metric-based procedure for coarse-grained selection of
multiple models for subproblems, and a hierarchical mixture model for integration of trained
submodels. The overall product is an integrated, multi-strategy learning system for
decomposable time series, which combines unsupervised learning (constructive induction),
supervised learning (using temporal, probabilistic networks), and model selection. This chapter
reviews the system and assesses its theoretical and practical relevance. First, | characterize the
attribute partitioning-based decomposition systemasapperfor supervised inductive learning.
| review the benefits for time series learning as documented in Chapter 5, and outline some
promising topics of continued research in this direction. Next, | evaluate the empirical results on
attribute partitioning, and contrast the improvements in classification accuracy with their
computational costs. | discuss the techniques, such as heuristic search, that | have applied to
make the most of this tradeoff; the obstacles that remain; and future work that addresses some of
these obstacles. | then survey the results regarding the use of multiple models in time series
learning — namely, the effectiveness of: subproblem definition, metric-based model selection, and
hierarchical mixtures of temporal probabilistic networks. Finally, | document the ways in which
my approach has been applied to real time series, and may be of future use in analysis of large-
scale, heterogeneous time series.

6.1 Interpretation of Empirical Results

This section analyzes the experimental results reported in the previous chapters, especially
Chapter 5. It begins with a discussion of the main findings and their ramifications, continues with
an account of the design choices and tradeoffs incurred, and concludes with a brief investigation
into the general properties of the test beds used in this dissertation.

6.1.1 Scientific Significance

The experimental results described in Chapter 5 bear out the following hypotheses:

1. [Chapter 2] Decomposition of learning tasks by attribute partitioning can be useful in
reducing variance when computational resources are limited (i.e., a consistent bound is

imposed on network complexity and time until convergence, or — more accurately — both).

91

Conversely, when desired classification accuracy is specified, this type of decomposition can
reduce the complexity of the model needed to achieve the target.

[Chapter 2] Using exhaustive enumeration of partitions, the optimal partition (with respect
to multiple models) can be identified for a particular learning model using statistically
sufficient number of testsin practice, this is typically not a very high number, but the
number of partitions grows superexponentially as a function of the number of attributes.

[Chapter 3] This method can be extended to testing all configurations of the learning models
in a multi-strategy learning systenin practice, this is typically a very high number not only
because of the moderately large number of configurations involved for a single problem
definition, but because the growth of configurations is exponential in the number of subsets
of the partition.

[Chapter 4] Adaptation of HME to partitioned concept learning problems is effective for
decomposable time series (such as the corn condition monitoring test bed);avestdata
fusion through specialization of expert networks to specific types of embedded temporal

patterns, or memory forms.

[Chapter 4] SM networks can be used as an alternative hierarchical mixture model when
there is a high degree of factorial structure in the learning problem (such as in the musical
tune classification test bed).

[Chapter 4] Hierarchical mixture models, as applied in this system, support multi-strategy
learning from time series, using multiple types of temporal probabilistic networks.

[Chapter 2] Partition evaluation can be made much more efficient by casting it as a state
space search problem and using a heuristic evaluation functidms allows data sets with
many more input attributes to be decomposed, although complexity is reduced only to an

exponential function of the number of attributes in the worst-case.
[Chapter 3] The architectural metrics are positively correlated with learning performance by

a particular configuration of learning architecture (for a learning problem defined on a
particular subset of a time series).his makes them approximate indicators of the suitability

92

of the corresponding architecture and the assumption that the learning problem adheres to its
memory form. Thus, architectural metrics may be used for partial model selection.

10. [Chapter 3] The distributional metrics for hierarchical mixture models are positively
correlated with learning performance by a particular learning method (for a learning
problem defined on a particular partitioning of a time serie3his makes them approximate
indicators of the suitability of the corresponding mixture model and the assumption that the
learning problem adheres to its characteristics (with respect to interaction among
subproblems). Thus, distributional metrics may be used for partial model selection.

The findings in this list support the design philosophy tmetdularlearning [JJ94, RH98] is
beneficial when there exists a hierarchical decomposition that reduces variance without incurring
excessive complexity. In the specialist-moderator framework, for instance, this means that the
problem factorization is highly efficient. In time series classification test beds such as the
musical tune classification problem, the factorization is optimal, and the specialist-moderator
framework is shown to outperform other learning architectures of comparable complexity. The
results in Section 5.4 also show that it is sometimes preferable to use specialist-moderator
networks for data fusion instead of mixture models where all complex input attributes and
intermediate targets are identical. This case occurs when: some decomposition of a learning task
contains subproblemthat are easier to solve in isolatiotall other things being equal); these
subproblems can be extracted through attribute partitioning and cluster definition; and the
intermediate outputs can be recombined with a hierarchical mixture model. An important part of
subproblem definition is the model selection step, which associates the “input-output”
specificatiol with a mixture model type and a learning architecture for the subproblem. Chapter
5 gives examples heterogeneous time series for which this step can be completed manually or
automatically.

6.1.2 Tradeoffs

A number of important performance tradeoffs were assessed in this dissertation. These
include:

® Such a specification fully defines the instance space, or concept language, but is only a partial definition
of the hypothesis language.

93

1. Bias/variance decomposition in terms of mixture modeling [GBD92, Fr98, Ro98]. The
general design philosophy in attribute-driven problem decomposition is that, for
heterogeneous time series, it is neither appropriate to use a “monolithic’ model nor a
traditional hierarchical mixture model. By “monolithic”, | mean a non-modular learning
model that is highly flexible but typically less tractable than one that employs some model
selection (either adaptation or coarse-graitethnique selectiofEVA98]). Section 3.1.1
discusses this issue in more detail. By “traditional” mixture models, | mean those that adapt
their components (experts or specialists) as part of the learning algopitinmarily as a
substitute for explicit decompositigRo98]. Some mixture models, such as HME, are used
in both supervised modes and with some cluster definition [Ha94, Am95, Bi95].

2. Efficiency versus accuracy in attribute partitioning-based decomposition. Optimal partitions
are neither necessarily unique, nor does the state space always édalitty very well
[Go89, RS90, Gi96]. One interesting line of future research is to apply genetic search
[BGH89, G089, LY93] to the attribute partitioning problem. This is a high-level change-of-
representation problem that eases the bias/variance tradeoff at the level of supervised

learning.

3. Efficiency versus accuracy in metric-based model selection. A highly accurate, but also very
expensive, approach, is to try every configuration of model available [Gr92, Ko95]. Even
when only a small or moderate constant number of configurations is available, problem
decomposition confounds this approach because the interactions among subproblems are
difficult to predict. Problems with such methods have been documented in other technique
selection applications, such as compression of heterogeneous files [HZ95]. The alternatives
are to: limit partitioning to a small number of subsets (because of the exponential growth in
the number of configurations that must be considered); make biasing assumptions about
subproblem interaction; or use a prescriptive metric to approximate or predict performance as

is done here.
6.1.3 Representativeness of Test Beds

Of additional interest is the question: to what degree are the real and synthetic test beds used
in experiments (and for high-level calibration of the model) representative of all time series?

94

Properties of interest that are captured by all test beds or represented by individuals are:

1. Heterogeneity.All of the real-world time series are heterogeneous, but this is due to various
causes (multiple, interacting physical processes in the crop monitoring test bed; signal
preprocessing in the musical tune classification test bed). Some of the synthetic data sets
(such as the partitioning test bed) are heterogeneous, some (such as the calibration sets for

architectural metrics) homogeneous.

2. Decomposability. All of the real-world test beds are decomposatdesome degredy
attribute partitioning. An interesting topic of future research is to consider alternative
methods for problem decomposition (such as knowledge-based constructive induction [Gu91,
D096]). All heterogeneous, synthetic time series have decomposable problem definitions.

3. Mixtures. Each type of mixture model (with various prescribed training algorithms) is
represented by one real-world data set and by several synthetic data sets.

4. Embedded temporal patterngll of the memory formén my implementation of the database
of learning techniques are represented by various subproblems.

6.2 Synopsis of Novel Contributions

This section presents a synopsis of contributions to the theory of multi-strategy machine
learning and its application time series analysis.

6.2.1 Advances in Quantitative Theory

The main contribution of this dissertation to the theoryndégrative methodgor supervised
inductive learning (cf. [Ko95, KJ97], as depicted in Figure 22) is a new wrapper system for
probabilistic networks (as depicted in Figure 23). This methodology is not specific to time series.

95

Training
Set

Training
Set Attribute Selection Search - Induction
Algorithm

Selected
Attribute Set

Attribute Evaluation

Induction Algorithm

Estimated
Final Accuracy

Evaluation

Test Set

Figure 22. Wrapper systems for supervised inductive learning [Ko95, KJ97].

Training
Training . L Set
Set Attribute Partition Search - Induction
Techniques
Selected

Attribute
Partition Probabilistic
Network

Partition Evaluation

Model Selection Probabilistic

Network

(Architectures and Methods)

Architectural Distributional
Metrics Metrics

<
[XX]

Estimated
Overall Accuracy

Evaluation

Test Set

Figure 23. New wrapper system based on attribute partition search and
metric-guided model selection.

96

Attribute
Partitioning

Cluster
Definition

Cluster
Definition

(X', y’) (X1, 1)y s (X' Vi)

Figure 24. Traditional constructive induction and its adaptation to
systematic (attribute-driven) problem decomposition.

A second major contribution of this work is the adaptation of constructive induction to
problem decomposition (as depicted in Figure 24 and discussed in Section 2.2). Again, this

extension of previous work is not specific to time series.

6.2.2 Summary of Ramifications and Significance

Heterogeneous time series learning problems are abundant in applications such as multimodal
diagnosis and monitoring [BSCC89, HLB+96, HGL+98], multimodal sensor integration [SM93,
Se98], multimodal human-computer interaction [Hu98], integrative knowledge based simulation
[WS97], and multiagent problem solving [GD88]. This dissertation focuses on the first three
categories of problems, though it may extend to certain problems in the last two categories.

Multimodality is a general property of data such that it is generated by multiple sources. It

may originate from the use afiultiple modelsn diagnosis [WCB86, Mi93], hybrid temporal and
atemporal inference [Sh95], qualitative and numerical data [He91, Gr98], integration of sensors

97

and laboratory measurements with subjective evaluations [BSCC89, RN95, Gr98], and other
similar phenomena. For example, sensors (artificial or natural) may be tuned to or configured for
differentmodes of perceptionn which case the tasks of learning, representation, and integration
are calledmultisensory[SM93]. Multisensory integration is a central problem in design of
intelligent alarms [HLB+96], where false positives and localization error may be reduced by
combining multiple percepts. This phenomenon has been observed and studied in neurobiology
[SM93, Se98] and is beginning to be investigated through simulation in computational
neuroscience [Se98]. Finally, multimodality in human-computer intelligent interaction is a
natural consequence of the modes of communication used by humans: speech, handwriting,
gestures, and facial expression, among others. For example, lipreading as an enhancement to
continuous speech recognition from audio is a topic of current research [Hu98]J.

In nearly all cases, multimodal time series are inherently heterogeneous. That is, because
multiple, different sourcegeneratedthe data, there are typically different temporal patterns
embedded in this data. For a given learning problem as defined on such time series, these pattern
types are often recognizable. If so, they may be exploited by separation of the problem to obtain
subproblems — in which case the learning problem is referred d@e@smposable The objective
is to find homogeneoutime series, those with only one dominant embedded temporal pattern,
typically originating from a single input source. This is where attribute partitioning methods
may be useful, they decompose time series data into homogeneous parts, along groups of
attributes.

Identifying homogeneous subsets of a time series data set is only a partial solution. When
such partitions are achievable, it is still necessary in most cases to select a suitable model
(hypothesis language) felachsubset. In real-world heterogeneous time series, the description of
the suitable model tends to vary along rather coarse parameters, such as the degree of
autoregressive versus moving average characteristics [Mo94, Ch96, MMR97]. This is borne out

by experimental evidence, as documented in Chapter 5.

It is typically feasible to combine the subset selection and model selection methods presented
in this research whenever three conditions are met. All three of these conditions are attainable by
refinement of metrics, compilation of training corpora for metrics, mixture modeling, clustering,

and preprocessing of attributes, in roughly descending order of importance. This research is

98

foremost concerned with the first two issues and to a limited extent with the remaining three, but
all are addressed.

First, the training data must be sufficiently homogenewitis respect to the set of identifiable
high-level temporal patternfor a “dominant pattern type” to be unequivocally indicated. This is
an issue of metric design and population of the database of learning techniques. Second, there
nust be sufficientepresentative datéor training the model selection mechanism based on these
patterns. This is an issue of corpus design and metric normalization. Third, a supplementary
unsupervised learning mechanism is required for determination of intermediate @ivgetan
attribute partition, and a data fusion mechanism is required for recombining trained models for
each component of the partition. This is somewhat data-driven, and is addressed by clustering

and mixture models, respectively.

The key contribution of subset partitioning as applied to heterogeneous time series learning is
its capability to effectively decompose learning tasks. The quality of decompositions depends
primarily on its homogeneity. The benefits of a homogeneous partition are threefold: first, it is
easier to fit the most appropriate model to each subtask; second, it automatically groups attributes
into the appropriate subsets; third, the data fusion problem is simplified (i.e., there is less work for

the mixture model to perform).

Fitting the most appropriate model to each subtask tends to reduce network complexity and
classification error, as is demonstrated in Chapter 5. It also provides support for multi-strategy
learning methods [HGL+98]. Grouping of attributes is a localized form relevance
determination. That is, the attributes are adjudged to “belong together” if and only if they are
mutually cohesive and relevant to their common intermediate teagdif their grouping entails
a tractable data fusion problem (as documented in Appendix D.2.1). The last benefit is a
consequence of a criterion that minimizes thefficiency of a partitioning, as described in
Section 2.4 and in Chapter 4.

Heterogeneity is especially salient in time series learning because:
1. Many problems that can be cast as time series analysis involve learning from multiple sources

of observations. This includes diagnosis and monitoring based on multiple models,

multisensor integration, and multimodal HCI.

99

2. The performance element for an intelligent time series analysis system often necessitates
models for different aspects of change among input variables [Do96, 1096].

3. Many time series learning problems, such as crop monitoring, also possess a spatial aspect.
Thesespatiotemporalearning problems may exhibit heterogeneity because of the location of
sensors. Related problems include: adaptive remote sensing, mobile robotics, and distributed
agents including some Internet agents [Sa97].

6.3 Future Work

Subsequent work following this dissertation will examine some potential solutions to some
problems that it has recognized, but not directly addressed. These include: further improvement
of performance in the real-world test beds studied; extension of the lessons learned and
performance gains achieved for these test beds, to larger-scale intelligent systems applications;
and generalization of the results from synthetic and real data sets to other domains. This section
presents some of the feasible research programs that arise as a result of the findings in this
dissertation.

6.3.1 Improving Performance in Test Bed Domains

| have presented an algorithm for combining data from multiple input sources (sensors,
specialists with different concentrations, etc.) and a modular, recurrent, artificial neural network
for time series learning. This method can be extended beyond probabilistic networks, but for
clarity of exposition and experimental standardization, | have focused on recurrent ANNs as the
characteristic architecture for time series learning. Fusion of time series classifiers showcases the
strengths of both mixture models because there are rpegprocessing methodbsat produce
reformulated input. The characteristic applications in this area are monitoring, prediction, and
control - problems which often involve continuous output. For clarity, however, | have focused
on discrete classification.

6.3.2 Extended Applications

One example of an extended learning test bed, which is related to the wide-area corn
condition monitoring test bed that | developed, is the analysis of large geospatial databases for
precision agriculture. A wealth of remote sensing, simulation, laboratory, and historical data has
recently become available for computational studies. This data is collected at a much finer level
of spatial granularity than that used in my pilot experiment for condition monitoring. One

100

important use of this data is the generatiorsphtiotemporal statisticfHHR98a], approximated
variables mapped over space and time, such as soil fertility, plant available water, and expected
yield. Estimation of spatiotemporal statistics for agricultural applications varies greatly in

difficulty, but can nearly always be enhanced using large geospatial databases.

Database Name Database Type Temporal Spatial Data Points
Granularity ~ Granularity Per Year'®
(CEYD) %)
Soil samples Map 1.40¢ 10" 2.0x10° 2x 10"
Elevatiort’ Map 2.52x 10 1.0x 10" 3x 10
Aerial image Map/Sensor 7.0010° 1.0x 107 9x10°
Yield" Map/Sensor 2.52 10° 2.0x10° 1x10°
Near infrared Map/Sensor 1.4010" 1.0x 10 5x 10
Soil types Map/Computed 1.40.0" 2.0x10° 2 x10°
Soil fertility Map/Computed | 1.4810" 1.0 x10" 5 x10°
Plant-available | Map/Computed | 1.08 10 1.0 x10° 7 x10°
moisture
Vegilt?tive Map/Computed | 7.00 x 10° 1.0 x10° 9 x10'
inde
Nutrient uptake | Map/Simulation) 1.00 x 10° 1.0 x10° 7 x10°
Corn growth Map/Simulation| 1.00 x 10° 1.0 x10° 7 x10°
Soybean growth | Map/Simulatioh 1,00 x 10° 1.0 x10° 7 x10°
Planting density | Map/Historical | 2.521(¢° 1.0x 107 3x 10"
Tillage Map/Historical | 2.5X 107 1.0x 107 3x 10"
Fertilizer Map/Historical |1.26 x 10° 1.0x 1¢° 5x 10
Application
Chemical Map/Historical |1.40 x 10" 1.0x 10" 5x 10°
Application
Soil composition | Map/Laboratory 1.4010" 2.0x10° 2x 10"
Precipitation Sensor 1.2010° 1.0x 10° 6x 10"
Temperature Sensor 1.%¥007 1.0x 10° 6 x 10"
Evapo- Sensor 1.06 10° 1.0x 10° 7x10°
transpiration
Solar radiation Sensor 1.6010° 1.0x10° 7 x 107
Neutron Sensor 1.46 10" 1.0x 10" 5x10°
(moisture) probe
Agronomic Historical 1.40x 10" 1.0x 10° 5x 10"
Estimates
Pedology Laboratory 1.4910" 2.0x10° 2x 10"

Table 11. Geospatial databases available for time series learning reseearch with
applications to large-scale precision agriculture.

19 Order-of-magnitude estimates, assuming data is collected over a 36-week season from & 2e3@.km
1 Acquired through satellite triangulation (e.g., GPS) or very-high resolution satellite radiometry (e.g.,
NOAA-11).

101

Table 11 lists maps, sensor data, historical records, and laboratory data that is available to the
principal investigators through the Department of Crop Sciences, the Williams field (an
experimental field in East Central lllinois), and the lllinois State Water Survey in Champaign,
lllinois. The Williams field is situated on a 1-square-mile, or 2.59-square-kilometer, plot and is
co-managed by one of the principal investigators.

Map-referenced data may be produced using manual probing, remote sensing, application of
computational geometry algorithms, simulation [JK86], or records of crop management. Items
shown initalics are the result of computation-intensive analysis of measurements (from both on-
site and remote sensors). Items showbafdface are typical quantities that @commende(or
decision-suppojt system [RV97] can be used torescribe or recommend, based on other
spatiotemporal statistics from these databases.

6.3.3 Other Domains

An important topic that | continue to investigate is the process of automating task
decomposition for model selection. | have used similar learning architectures and algorithms for
each subproblem in our modular decomposition. | have shown how the quality of generalization
achieved by a mixture of classifiers can benefit from the ability to identify the “right tool” for
each job. The findings | report here, however, only demonstrate the improvement for a very
limited set of real-world problems, and a (relatively) small range of stochastic process models.
This needs to be greatly expanded (through collection of much more extensive corpora) to form
any definitive conclusions regarding the efficacy of the coarse-grained model selection approach.
The relation of model selection to attribute formation and data fusion in time series is an area of
continuing research [HR98a]. A key question | will continue to investigate is: how does attribute
partitioning-based decomposition supporlevance determinationn a modular learning
architecture?

102

A. Combinatorial Analyses

This appendix briefly presents some illustrative combinatorial results and statistics that are
useful in benchmarking components of the learning system and assessing its computational
bottlenecks. The primary intractable problem (aside from the training algorithm in the actual
supervised learning phase) is attribute partition evaluation. Another important bottleneck is
evaluation of composites. Using the state space search formulation introduced in Chapter 2, |
show below that the asymptotic running time for partition evaluation is only improved from
superexponential to exponential. For attribute-driven problem decompositions, however, | argue
that this improvement is of practical significance. Using the metric-based model selection
algorithm introduced in Chapter 3, | show how significant savings can be attained, by using

approximations of model performance instead of exhaustively testing configurations.

1. Growth of B, and S(n,2)

1 1 0

2 2 1

3 S 3

4 15 7

5 52 15

6 203 31

7 877 63

8 4140 127
9 21147 255
10 115975 511
11 678950 1023
12 4213597 2047

13 2.76E+07 4095
14 1.91E+08 8191

15 1.38E+09 16383

16 1.05E+10 32767

17 8.29E+10 65535

18 6.82E+11 131071
19 5.83E+12 262142
20 5.17E+13 524287
25 4.64E+18 16777219
50 1.86E+47 5.63E+14
100 [4.76E+115 6.34E+29
500 |1.61E+843 1.64E+15
1000 |- 5.36E+300)

Table 12. Bell numbers and number of size-2 partitions as a function of set size

103

Table 12 illustrates the growth of the Bell numbers as a function of the seinsiz&s noted
in Chapter 2, the growth dB, is «(2") and o(n!). This makes enumeration of all states in the
search space of partitions an infeasible prospechfarger than about 20. Furthermore, direct
evaluation of each state requires several complete experiments (the alternative being to use
distributional metrics, as documented in ChapterBachof these must run for as long as it takes
the training algorithm to converge [Ne96, Hi98]. Finally, to gather enough data points (i.e.,
statistics on classification accuracy) to differentiate the confidence intervals for model
performance may actually require many experiments, if indeed it can be done at all [Gr92, Ko95].
| addressed each of these problems by casting partition evaluation as a heuristic search: (as
described in Chapter 2). The complexity is reduced to the maximum breadth (diameter) of the
state space. As for the heuristic evaluation function for evaluation of each state, | isolated this
subproblem (which is still essential to the success of partition search) and deferred it until the

model selection stage (as described in Section 2.4 and Chapter 3).

A limitation of simple heuristic search is that, in order to expand the “frontier” of vertices to
be visited (theOPEN ist), all children of the current candidates (tB&ANDIDATESIist as it is
called in Section 2.2.1.2) must be evaluated [BF81, Wi92, RN95]. Unfortunately, this means that
in the first step of partition search, all of the size-2 partitions must be evaluated. The number of
such partitions i§S(n, 2)= 2"* - 1. If the heuristic is accurate, this quantity tends to dominate the
number of partitions to be evaluated on subsequent iterations of an informed search algorithm (as
opposed to breadth-first search, for example). For example, observe that each size-3 partition
entails a size-2 split of one subset (of size at most 1), and so on. Although a heuristic
evaluation function can be deceived, a good function will typically not have an expanding frontier
(i.e., expand more tha®(S(n, 2) members before finding an optimal partittyn This can be
explicitly enforced by constraining th€EANDIDATESIist to contain a constant-width set of
vertices, as in the case of beam search. Kohavi [K095, KJ97] uses a recency criterion for
termination (i.e., if theBEST vertex has not changed in a pre-set number of iterations, stop
searching — in this case, do not test any further subdivisions of the c&ESEpartition).

12 If the heuristic is admissible, this (locally) optithsolution is also the (global) optiam [Bo?7?].
Typically, however, we are dealing with neither an admissible heuristione that is always close to h*;
nontrivial admissible heuristics are hard to keep close to the true value, and vice versa.

104

As Table 12 also shows, even the first layer of the state space (which must always be

expanded) grows exponentially.

In practice, my system can handle at least twice as many

attributes using partition search as with attribute enumeration. Exponential running time means

partition search is swamped out at around 20 attributes on a fast desktop workstation, perhaps 50

for high-performance computers with the highest currently available throughput; by contrast, the

current limit is approximately 11 and 21 for naive enumeration.

Partition Members

Partition Members

1 12345 27 15 24 3

2 1 2345 28 15 2 34

3 2 1345 29 1 23 45

4 3 1245 30 1 24 35

5 4 1235 31 1 25 34

6 5 1234 32 123 4 5

7 12 345 33 124 3 5

8 13 245 34 125 3 4

9 14 235 35 135 2 4

10 15 234 36 134 2 5

11 23 145 37 145 2 3

12 24 135 38 1 234 5

13 25 134 39 1 235 4

14 35 124 40 1 245 3

15 34 125 41 1 2 345

16 45 123 42 12 3 4 5
17 12 34 5 143 13 2 4 5
18 12 35 4 |44 14 2 3 5
19 12 3 45 |45 15 2 3 4
20 13 24 5 |46 1 23 4 5
21 13 25 4 |47 1 24 3 5
22 13 2 45 |48 1 25 3 4
23 14 23 5 |49 1 2 34 5
24 14 25 3 |50 1 2 35 4
25 14 2 35 |51 1 2 3 45
26 15 23 4 |52 1 2 3 4

Table 13. Partitions of a 5-attribute data set

Table 13 shows partitions of a 5-attribute data set.

2. Theoretical Speedup due to Prescriptive Metrics

The naive method for selecting a learning technique from a database of learning combinations

is to test every configuration. This may, furthermore, involve multiple tests for each pair of

combinations in order to judge between them (cf. [Gr92], [Ko95], [KSD96]). Considering only

105

one combination at a time, the “try and see” method entails G “) tests forr possible choices

of learning algorithm, possible choices,possible choices of training algorithm, aaglpossible
choices of mixture model. In the current desigr, 3, .= 3,Cn= 2, andc = c,* ¢, = 6. Because

my experiments usually use only one type of training algorithm at a time (as opposed to using the
distributional metric to select it), we can suppose that3, c,= 1,c,= 2, andc = c,*C, = 2. For

a size-4 partition, however, this still mearfs61296 combinations.

More realistically, we can constrain the mixture model, training algorithm, or both to be a
function of an entire partition. Because the distributional metrics are computed over the entire
partition, this is a natural assumption. There will then be ardhoices for learning methods, but
still r* for the learning architecture. The number of combinations to examine is thém €)(
which, while significant smaller, is still a substantial number of experimeritsZ3= 162 in the
case of a size-4 partition).

If a 2-D lookup table is used, however, evaluation can be performed on rows and columns of
the table independently. This reduces the number of testsko ©¢,+ Cy)), or 4+ (3+1+2) =
24. The empirical speedup is even more significant, if metric-based model selection is used,
because the time to evaluate a single configuration is typically much less than the convergence
time for that configuration (especially for MCMC methods [Ne96]). Thus, the organization of
learning architectures and methods into a database provides significant computational savings.

3. Factorization properties

Definition 1: A factorizationof a data seD under an output attributle; (I = 0) is the set of

equivalence classes of pointsbDndistinguishable by;.

For example, Figure 25 shows a factorization of a set of 15 points using two attriputes
andb.;,. Each induces a factorization of size B4, their parent in the specialist-moderator tree,
induces a factorization of size 7 (because two of the intersections among equivalence classes of
the children are empty). This is efficient because 7 > 3 + 3.

Definition 2: An inefficient factorizatiorof D under a nonleaf attributs (I > 1) is a factorization

whose size is less than or equal to the sum of its children’s.

106

R2 R3

ONONC
® ©

Figure 25. Hypothetical Factorization of a Data Set Using Two Attributes

Definition 3: A possible factorizatioby by (I = 1) is one of the2™ thath; can induce under an

E L]
arbitrary data seD, where p; = P-1x @ndpo; = O.
k=s[i]

Lemma: The number of possible factorizations by a nonleaf output attribu{e> 1) that are

Eli]

sIj j
inefficient is Nljbad = zg % wheres, = z Pivk -
i=0 Ji

k=§[]]

Theorem: Let f,_, (S[j]<k<E[]j],1 21) be a child offy and let 2"« denote the number

of possible factorizations it induces.

bad
. li
lim =0
Prlagi) =@ Pag) 2k 2P

Definition 4: An orthogonalfactorization ofD under a nonleaf outpug; (I = 1) is one whose size

is equal to the product of the sizes of its children's.

107

Property 1: Among factorizations of a data set in any specialist-moderator decomposition,

factorization size is maximized in the orthogonal case.

For purposes of generalization, maximizing the number of discriminable classes is not
necessarily the goal. However, suppose that a set of overall target classes (such as those found by
conceptual clustering using the original attributes) is knov@iventhis set and a hierarchically
decomposable model, it is best to dichotomize as cleanly (orthogonally) as possible. This process
is subject to constraints of network complexityd learning complexity of the induced attributes
(i.e., whether the subnetworks can be trained efficiently).

Definition 5: A perfect hypercubidactorization of D underbj is one that is orthogonal and
whose descendants' at each level are equal in size.

Table 14 gives statistics aquarefactorizations (perfect hypercubic factorizations using 2
children).

m n N*24m,n) 2m" % inefficient
2 2 16 16 100

3 3 466 512 91

4 4 39203 65536 59.8

5 5 7119516 33554432 21.2
6 6 2241812648 68719476736 3.3

Table 14. Number of possible and inefficient square factorizations.

Property 2: Perfect hypercubic factorizations minimize the sum of factorization size among child
attributes, given the factorization size of the parent.

Although minimum total factorization size among children does not guarantee minimum network

complexity, our examples below show that it is a good empirical indicator.

This analysis leaves two practical questions to be answered:

1. Whatis the empirical likelihood of finding efficient factorizations of D?

108

This depends on many issues, the most important being the qualiy thie constructive
induction algorithm. | consider the case where a gBgik already known or can be found by
knowledge-based inductive learning [Be90].

2. What is the difficulty of learning a factorization of D even if it is efficient?

The results for the musical tune classification problem, reported in Chapter 5, demonstrate
that the experimental difficulty of training a specialist-moderator network on efficient
factorizations is lower than that of training a non-modular feedforward or temporal ANN. By
“difficulty” 1 mean achievable test error given a consistent limit on network complexity and
training time In future work, | will investigate the computational learning theoretic properties of
specialist-moderator networks, but these are beyond the scope of this dissertation.

109

B. Implementation of Learning Architectures and Methods

This appendix presents salient implementation details for the time series learning
architectures, training algorithms, and hierarchical mixture models used in this dissertation.

1. Time Series Learning Architectures

This section defines the underlying mathematical models formémory formstudied, and
which are used to populate the database of learning techniques described in Chapter 3. Each
memory form corresponds to a row of Table 1 in Chapter 3. The implementation platforms are

also briefly summarized.

1.1 Artificial Neural Networks

The artificial neural networks used for experimentation in this dissertation were implemented
primarily usingNeuroSolutions v3.00, 3.02nd3.02[PL98], which | used to collect results on
temporal ANNs, unless otherwise noted. | implemented wrappers (e.g., for metric-based model
selection as described in Section 5.2) and custom automation (e.g., for exhaustive partition
evaluation as described in Section 5.3) usMigrosoft Visual C++ 5.0and Visual Basic for
Applications under Windows NT 4.0 Data preprocessing (encoding, partitioning) and
postprocessing (discretization of intermediate outputs for moderator networks, counting the
number of correctly classified exemplars) was implemented in G#ierosoft Visual C++for
Windows NTandGNU C++ for LinuxX). In many cases this code was integrated with or built
upon that for metric-based model selection and partition evaluation (see Appendix C).
Preliminary experiments testing the ability of simple (specifically, EIman) recurrent networks to
predict various stochastic processes (such as those generated by Reber grammars and hidden
Markov models [RK93, Hs95]) were implemented MATLAB (versions 4 and 5) using the

neural networks toolbox.

Adjustment of tunable parametensher than attribute partitioning (subset membership for
each input) was primarily performed by hand, and automated in a few select cases. |
implemented such automation mostly for synthesizing data in evaluation experiments as
documented in Chapter 5 and Appendix D, using hybrids of scripting languages such as Visual
Basic, theNeuroSolutionsmacro language [PL98], and Perl, along with some standalone C++

programs. Parameter tuning for neural networks consisted of:

110

1. The number of hidden units, which was tuned by hand to a consistent baseline and
normalized (see Section B.3 below) for components of a hierarchical mixture
The step size, also tuned by h&hd
The momentum values and time constants (see Section 5.1)

1.1.1 Simple Recurrent Networks

The term simple recurrent network refers to the family of artificial neural networks that
containsrecurrent feedbackor connections from one layer to an earlier one (according to the
feedforward data flow). They are callsidnplebecause the network dynamics do not, in general,
provide a facility for adapting the weights (i.e., decay values). The weights are therefore
considered constants relative to the training algorithm (but can still be treated as high-level,
tunable parameters using a wrapper for the supervised learning component). Other types of
recurrent networks, such gsartially and fully recurrent networks, have trainable recurrent

weights.

Jordan networks, whose dynamics were first elucidated by Jordan [Jo87], contain recurrent
connections from the output toontext elementsvith exponential decay. Similarly, EIman
networks are recurrent networks with connections from the first hidden layer to the context
elements [EI90, PL98]. Finally, input recurrent networks are those with connections from input
to context elements [RH98]. Input recurrent networks are a typmmfing averaganodel
previously studied under the terponential trace memofi¥094, MMR97, PL98].

In linear systems the use of the past of the input signal creates what is called the moving
average (MA) models. These are best at representing signals that have a spectrum with sharp
valleys and broad peaks [BD87, PL98]. The use of past values ofupeitgenerates a memory
form corresponding tautoregressiv€AR) models. These models are best at representing signals
that have broad valleys and sharp spectral peaks [BD87, PL98]. In the case of nonlinear systems,
such as neural nets, the MA and AR topologies are nonlinear (NMA and NAR, respectively). The
Jordan network is a restricted case of an NAR(1) model, while the input recurrent network is a
restricted case of NMA. Elman networks do not have a counterpart in linear system theory.

13 Experiments with step size adaptation algorithms (such as Delta-Bar-Delta [Ha94, PL98] and exponential
adjustment as used in the MATLAB Neural Networks toolbox) showed that extant procedures are generally
too insensitive to use as wrappers for performance tuning, on arbitrary time series learning problems.

111

These simple recurrent network topologies have different processing power, but the question of
which one performs best for a given problem is a coarse-grained model selection problem.

Neural networks with context elements can be analytically characterized for the case of linear
processing elements, in which case the context elements are equivalent to a very simple lowpass
filter [PL98]. A lowpass filter creates an output that is a weighted (average) value of some of its
more recent past inputs. In the case of the Jordan context unit, the output is obtained by summing

the past values multiplied by the cumulative det:4ya scalar:
t
yi(t) = z X; (™
k=0

Thex; value is thé™ input in the case of input recurrent networks, output filranit in the
first hidden layer in the case of EIman networks, and output fronif'thait from the output layer
in the case of Jordan networks.

| conducted preliminary experiments using Elman, Jordan, and input recurrent networks on
the musical tune classification and the crop condition monitoring data sets. The results indicate
that for unpartitioneddata (i.e., non-modular learning), the input recurrent network type tends to
outperform Elman and Jordan networks of comparable complexity. This suggests that in these
particular cases, the data are most effectively assumed to originate from MA processes than from
AR or Elman-type processes. More specifically, they are more strongly attuned to the
exponential tracememory form. In the crop monitoring test bed, however, non-exponential
patterns can be observed in visualizations such as the phased correlogram (Figures 13 and 14, in
Chapter 5). The positive learning results from the multi-strategy, hierarchical mixture model
(pseudo-HME of TDNN and input recurrent specialists with a Gamma network moderator)
provides evidence that these patterns conform to different memory forms (in this case, two
different MA processes — one exponential, one non-exponential).

1.1.2 Time-Delay Neural Networks

Time-delay neural networks (TDNNs) are an alternative type of AR model that expresses
future values of ANN elements as a linear recurrence over past values [LWH90, Mo94]. This is
implemented using memory buffers at the input and hidden layers (associated with the units
rather than weights). Thaelayrepresents the number of discrete time units of memory that the

112

model can represent, a quantity also knownlegth[Ha94, Hs95, MMR97, PL98]. TDNNSs can

be thought of as having as many “copies” of a hidden or input unit as there are delays [Ha94].
Data is propagated from one copy to the next in a cascaded (serial) delay line; the aTidNNnN

has therefore also been used to meggped delay-line neural netwofMMR97, PL98]. The

TDNN architecture has the simplest mathematical description in terms of convolutional codes, as
given in Appendix C.

1.1.3 Gamma Networks

Gamma networks (ANNs whose elements are generalized temporal units Gallacha
memorieyare a type of ARMA model [DP92, M094, PL98]. They express law@pth(through a
delay-line-based mechanism that represents the MA part of the pattern-generating process) and
resolution(through an exponential decay-based mechanism that represents the AR part) [M094,
MMR97]. The combination of both tapped delay lines and exponential traces in a Gamma
network makes the model more general and flexible, but also increases the number of degrees of
freedom. The nonlinear dynamics of a Gamma network are extremely complex — relatively more
so than for a comparably-sized SRN or TDNN [DP92]. Gamma networks commeqlyire
fewer trainable parameters to acquire a general ARMA process than a pure AR or MA model,
however, the added complexity means that they also tend to require more updates to converge
[DP92, M094, MMR97]. Furthermore, the complexity is aggravated when global optimization is
used; the extant research on ARMA models suggests that extension to Bayesian learning, for
example, poses difficulties [PL98, Wa98]. In future work, | intend to investigate integrative
models (ARMA and ARIMA) [Ch96] with variational and MCMC learning [Ne96, Jo97a],
especially in the capacity of data fusion.

1.2 Bayesian Networks

1.2.1 Temporal Naive Bayes

The implementation of the naive Bayes learning architecture is based entirely on that given in
MLC++, Kohavi et als machine learning library in C++ [KS96, KSD96]. Though | installed
tested under both thilicrosoft Windows NT 4.@nd RedHat Linux 5.Jplatforms, | conducted
most experiments using the Linux version, for efficiency’s sake. In several exploratory
experiments, | constructed artificial features to test the capability of discrete naive Bayes to
acquire simple memory forms (such as M-of-N and patitpugh tim¢. The results are reported
in Appendix D.

113

1.2.2 Hidden Markov Models

My original implementation of HMM learning used the Viterbi algorithm [Le89, CLR90,
BM94] and was written in MATLAB [Hs95]; a port to GNU C++ was used for additional
experiments [Hs95]. Parameter learning with gradient and EM learning rules can be performed
using an ANN representation (wherein HMM parameters are encoded in ANN weights, then
interpreted after training). This dualization was documented by Bourlard and Morgan [BM94]
and is similar to several discussed by Ackley, Hinton, and Sejnowski [AHS85], Neal [Ne92,
Ne93], and Myllyméaki [My95, Hs97].

2. Training Algorithms

This section defines the training algorithms for the typesaafet distributionstudied, and
which are used to populate the database of learning techniques. Each training algorithm
corresponds to a single column (subheading of a learning method) of Table 1 in Chapter 3.

2.1 Gradient Optimization

Gradient learning is a basic optimization technique [BF81, Wi93] adapted to parameter
estimation in network models [MP69, MR86]. Its advantages are that it is simple to implement
and highly general (over families of probabilistic networks — i.e., learning architectures). Its
disadvantages are that it is, in general, slow to converge [MR86, JJ94] and, by definition,
susceptible to local optima [MR86, Ha94, Bi95]. The implementations tested in this dissertation
were implemented first usinglATLAB 4(using the Elman network code in the Neural Network
toolbox), then inNeuroSolutions|PL98]. The exact gradient learning algorithm used was
backpropagation with momentufrla94, PL98], though experiments with simple Step, Delta-
Bar-Delta, and Quickprop learning rules were conducted. These generally resulted in worse
performance on the data sets tested, which were generally heterogeneous time series or subsets
thereof. Batch update was used in all cases, as incremental (online) learning produced generally

poorer performance as well.

2.2 Expectation-Maximization (EM)

As mentioned in Section B.1.2 above, the Viterbi algorithm (a graph optimization algorithm
for probabilistic network learning [Le89, CLR90]) was implemented for experiments on HMMs.

114

As EM does, the Viterbi algorithm estimates the maximum likelihood path through a state
transition model. The primary difference is that the Viterbi algorithm is designed for the
backward problem (maximum likelihood estimation) and learning by iterative refinement requires
an update step. In EM, this is called the “maximize” step (the acrdBlyhis also taken to stand

for Estimate-and-MaximizdLe89]. Variants of Viterbi used to test the efficacy of naive Bayes
(the learning rule, not the learning architecture) on simple HMMs were implemented using C++
and MS Excel [Hs95]. Experiments using this combination on the crop condition monitoring data
set indicated that gradient learning (MAP estimation) was preferable in that case.

2.3 Markov chain Monte Carlo (MCMC) Methods

MCMC refers to a family of algorithms that estimates network parameters by integrating over
the conditional distribution of models given observed data [Ne96]. This integration is performed
using Monte Carlo techniques (also knownraadom samplingand the distribution sampled
from is a Markov chain of network configurations (states of a large stochastic model). The
MCMC algorithm implemented in this dissertation is the Metropolis algorithm for simulated
annealing, documented in [KSV83]. | implemented simulated annealing using large-scale
modifications toNeuroSolutionsbreadboards (network and training algorithm specifications)
[PL98]. These modifications were based on Neal's implementation of the Metropolis algorithm
[Ne96, Fro8] and required extensive use of the dynamic link library (DLL) integration feature of
NeuroSolution$PL98].

3. Mixture Models

This section defines the mathematical models for Hiezarchical mixture modelstudied,
and which are used to populate the database of learning techniques. Each mixture type
corresponds to a group of 3 columns (main heading of a learning method) of Table 1 in Chapter
3. Together with the choice of training algorithm, the choice of mixture model determines the
learning methodo be used (as prescribed by the distributional metrics). This specification, plus
that of the learning architecture (as prescribed by the architectural metrics), faongp@siteas
described in Section 3.1 and Appendix C.

3.1 Specialist-Moderator (SM)

115

The specialist-moderator network was implemented ulliegroSolution$.0, 3.01, and 3.02
[PL98] with data fusion being performed first by hand, then using automation scripts written in
Visual Basic for Application§VBA). Specialist outputs were typically passed through a winner-
take-all filter that converted real-value intermediate output to 1-of-C coded [Sa98] (also known as
a locally coded [KJ97]) output. This provides input to the moderator that is sparse, discrete, and
conforms to the construction algorithm for SM networl&glect-Nef given in Section 4.3.
Experiments on the musical tune classification data set showed that winner-take-all prefiltering
for moderator networks resulted in better performance (classification accuracy using the same-
sized moderator networks) than raw intermediate outputs from the specialists.

3.2 Hierarchical Mixtures of Experts (HME)

The hierarchical mixture model (a variant of the HME architecture of Jordan et al [JJB91,
JINH91, JJ94]) was also implemented udiepuroSolutions.0, 3.01, and 3.02 with data fusion
being performed first by hand, then using automation scripts writtetYigual Basic for
Applications(VBA). Experiments using winner-take-all prefiltering and unfiltered intermediate
targets were inconclusive for synthetic data sets and for the crop condition monitoring data set.
My conjecture is that for most HME-type applications, unfiltered intermediate data will tend to
perform slightly better, because this is most consistent with the original design of the gating
networks [JJ94].

116

C. Metrics

This appendix gives empirical and mathematical background for the architectural and
distributional metrics, presents the design rationale for each one to show how it was derived, and
explains how the individual metrics are computed.

1. Architectural: Predicting Performance of Learning Models

As explained in Section 1.1 and Section 3.2, the primary criterion used to characterize a
stochastic process in my multi-strategy time series learning systenmeiitery form

1.1 Temporal ANNs: Determining the Memory Form

To determine the memory form for temporal ANNs, | make use of two properties of
statistical time series models. The first property is that the temporal pattern represented by a
memory form can be described as@nvolutional code That is, past values of a time series are
stored by a particular type of recurrent ANN, which transforms the original data into its internal
representation. This transformation can be formally defined in termskefreel functiorthat is
convolved over the time series. This convolutional or functional definition is important because
it yields a general mathematical characterization for individually weighted “windows” of past
values (time delay aresolutior) and nonlinear memories that “fade” smoothly (attenuated decay,
or depth [DP92, M094, PL98]. It is also important to metric-based model selection, because it
concretely describes the transformed time series that we should evaluate, in order to compare
memory forms and choose the most effective one. The second property is that a transformed time
series can be evaluated by measuring the changeriditional entropyfCT91] for the stochastic
process of which the training data is a sample. The entropy of the next value conditioned on past
values of theoriginal data should, in general, be higher than that of the next value conditioned on
past values of theansformeddata. This indicates that the memory form yields an improvement
in predictive capability, which is ideally proportional to the expected performance of the model
being evaluated.

1.1.1 Kernel Functions

Given an input sequencet) with componentgX, (t),1<i < n}, its convolution, (t) with a

kernel functiong(t) (specific to the™ component of the model) is defined as follows:

117

5, ()= "¢, (t - k) x(k)

k=0

(Eachx or x; value contains all the attributes @ame subseof a partition.)

The memory form for a recurrent ANN is determined by its kernel function. For tapped
delay-line memories (time-delay neural networks, or TDNNSs), the kernel function is:

) for j=i,1<i<d
Ci(J) .
otherwise

%, (t)=x(t-i)1=i<d

This kernel function is inefficient to compute, as a tapped-delay line can be implemented in
linear space and linear time without convolution (which takes quadratic time in the
straightforward implementation). The above characterization, however, is still useful because it
captures the notion ofesolution TDNNs arehigh-resolution, low-depttmodels: they are
flexible, nonlinear AR models that degrade totally when the required depth exceeds the number
of memory state variables (delay buffer or “window” width) [M094, PL98].

For exponential trace memories (input recurrent networks), the kernel function is:

(J) (1_ﬂi)ﬂij

Ci
% (t) = (L= a2 i (1) + % (£ - 2)

This kernel function expressedepth by introducing a “decay variable” or “exponential
trace”y; D[—Ll], for every model component. IR networks angh-depth, low-resolution

models: they are flexible, nonlinear MA models that degrade gradually (how slowly depends on
the decay variables, which can be adapted based on the training data) as the required depth grows
[Mo94, PL98]. IR networks dmot scale up in complexity with the required information content

for successive elements of the input sequence; that is, they can store information further into the
past, but this information degrades incrementally because it is stored using the same state

variables.

118

Finally, the kernel function for gamma memories is:

%—m J i,

otherwise
)A(ﬂ,j (t) = (1_ lu))zp,j—l(t) + (1_ :u))A(;z,j—l(t)
%,4(t)=x(t+1) fort=0,and%, (0)=0 forj=0

This kernel function expresses both resolution and depth, at a cost of much higher theoretical
and empirical complexity (in terms of the number of degrees of freedom, convergence time, and
the additional computation entailed by this more complex function). Gamma memories are even
more flexible nonlinear ARMA models that trade this complexity against the ability to learn both

exponential traces; U [0,1] and tapped delay-line weightsCIN .

1.1.2 Conditional Entropy

The entropyH(X) of a random variabl, the joint entropyH(X,Y)of two random variableX
andY, and conditional entropk(X|Y) are defined as follows [CT91]:

H(X):def —E[Ig p(X)]
H(X,Y)=qer ~Ellg p(X,Y)]
H(X 1Y) =g D P(JH(Y X =X)

xO &

= _Ep(X,Y)[Ig p(X |Y)]
=H(X,Y)-H(Y) (chainrule)

For a stochastic process (time-indexed sequence of random variftlesye are interested
in the conditional entropy of the next value given earlier ones. This can be written as:
Hy =aer H(X()1X; (). 1<i < d)
= def H(X(t)| Xl(t)1"" Xq (t))

To measure the improvement due to convolution with a kernel function wdith
components, we can compuﬂad :

Hy e H(X ()X, ()11 <)

119

where X, (t) is as defined above. An additional refinement that allows us to evaluate specific
subsetof input data (recall that architectural metrics are used to determine the memory form for

a singlesubsewithin an attribute partition) is to definél § and H 4 fora subses:

Given a kernel function for a candidate learning architecture, | then define the architectural

metric as follows:

H S

Mg =<8

H d
for a recurrent ANN of typeRD{TDNN,SRNGAMMA}. Note that, becausleldS is identical

to the entropy of a depttitapped delay-line convolutional code (for the training data), the metric

Mo Will always have a baseline value of 1. | adopt this convention merely to simplify the

normalization process.

A final note: an assumption | have made here is that predictive capability is a good indicator
of performance (classification accuracy) for a recurrent ANN. Although the merit of this
assumption varies among time series classification problems [GW94, M094], | have found it to be
reliable for the types of time series | have studied.

1.2 Temporal Naive Bayes: Relevance-Based Evaluation Metrics

The memory form for a general naive Bayesian classifier [K0o95, KSD96, KJ97], network
[Pe88], or rule set [KSD96] cannot be defined as a convolutional code, so predicting the
effectiveness of naive Bayes (or approximation by MCMC methods [Hr90, Ne93]) is not as
straightforward. In future work, | will investigate the application of relevance measures [He91,
KJ97] to evaluation of temporal naive Bayesian networks.

120

1.3 Hidden Markov Models: Test-Set Perplexity

The memory form for ararbitrary HMM is not easy to define as a convolutional code. In
certain linear models, such as first-order HMMs for speech recognition [Le89], algorithms such
as the Viterbi algorithm [Vi67] can be used decode the hidden state sequefice., solve the
search-based inference [Pe88], backward problem [Le89]). | conducted preliminary
experiments (reported in [Hs95]) on HMM parameter learning using the EM algorithm [DLR77,
Le89] and gradient search by dualization to simple recurrent networks [BM94]. The results
suggest that a good indicator of problem difficulty for a particular HMM architecture is the test-

set perplexity [Le89]:

1
EIog p(X, %00 X,)

which is an estimate of the true perplex@yfor observed dataQ can be defined in terms of
a finite state model (an HMM [Le89, Ra90] or Reber diagram [RK96]) with staf&sand

observations X(t):

H(X(t)1s(t) = 3, p(x(t) s(t) 1g] p(x(t) s(t)]

xadX

or over a state transition gramm@ar(defined over these states):

Q(G)=2"¢

H(G) =2 Als(t))H (X (t)Ist)

The measure based upon G is defined over symbols (associated with each transition in an
HMM) and is referred to as thger-wordperplexity in speech recognition [Le89]. In future work,
I will investigate the application of empirical perplexity measures [Le89, Ra90] to evaluation of
HMMs for time series learning. The principle behind this approach is that, just as the ratio of
conditional entropy for a convolutional code is a good indicator of predictive dapabr a
recurrent ANN model, so is the perplexity a good indicator of difficulty for a time series learning
problem,given a particular parametric modelGiven specific topologies of HMMs [Le89, Ra90,
BM94] or partially observable Markov decision processes [BDKL92, DL95], these information
theoretic measures indicate how appropriate each model is for the training data.

121

2. Distributional: Predicting Performance of Learning Methods

The learning methods being evaluated are: the hierarchical mixture model used to perform
multi-strategy learning in the integrated, or composite, learning system, and the training
algorithm used. This section presents the metrics for each.

2.1 Type of Hierarchical Mixture

The expected performance of a hierarchical mixture modehiglisgtic measurement; that is,
it involves all of the subproblem definitions, the learning architecture used for each one, and even
the training algorithm used. It must therefore take into account at least the subproblem
definitions. | designed distributional metrics to evaluate only the subproblem definitions. This
criterion has three benefits: first, it is consistent with the holistic function of mixture models;
second, it is minimally complex, in that it omits less relevant issues such as the learning
architecture for each subproblem from consideration; and third, it measures the quality of an
attribute partition. The third property is very useful in heuristic search over attribute partitions:
the distributional metric can thus serve double duty as an evaluation function for a partition
(given a mixture model to be used) and for mixture model (given a partitioned data set). As a
convention, | commit the choice gfartition first, then the mixture model and training algorithm,
then the learning architectures for each subset, with each selection being made subject to the
previous choices.

2.1.1 Factorization Score

The distributional metric for specialist-moderator networks isféwtorization score This is
an empirical measure of how evenly the learning problem is modularized,; it is not specific to time
series data. The score is a penalty function whose magnitude is proportional to the deviation
from perfect hypercubidactorization. In Appendix A, a factorization is defined for a locally
coded targeb; (I = 0). by is formed through cluster definition using a subagbf a partition at
levell; that is, the set of distinguishable classes depends ardlgcted viewthrough a subset of
the original attributes. We can therefore characterize the restricted view by measuring the
factorization size for an attribute subset. The most straightforward way to do this is through a
naive cluster definition algorithm that works as follows

Given: a set of overall target classes and an attribute partition

122

Sweep through the training data once for every subset.

2. If any two exemplars occur such that the same input (restricted to the attributes in the
subset) is mapped to different output classestgethe equivalence classes for these two
output classes.

This algorithm is best implemented usingiaion-finddata structure as described in Chapter
22 of Cormen, Leiserson, and Rivest [CLR90]. | implemented a union-find-based version of this
algorithm, which requires less than half the running time required for the HME metric (described
in Section 2.1.2 below) for small numbers of input attributes. As Table 4 in Chapter 5 shows,
however, performance tends to be determined by memory consumption, with thrashing becoming
a bottleneck for as few as 8 to 10 attributes.

If the number of distinguishable output classes for each sahsket i <k, is g;, then allo;, are

equal in the perfect hypercubic factorization. Let the produci beN:

k

MFS=_Z

i=1

k
Nzl_loi

The metric imposes a penalty on every factorization (belonging to a single subset) that

0.

lg \/Iﬁ%

deviates from the “ideal case” [RH98]. For example, suppose a set of attributes is partitioned into
three subsets, whose factorization sizes are 6, 6, and 6. NFe@16 andMsy = 0. If, for a
different size-3 partition, the factorization sizes are 2, 18, and N6,= 216, but

Mg, =-2lg3 = -3.17.

2.1.2 Modular Mutual Information Score

The distributional metric for HME-type networks is tin@odular mutual information score
This score measures mutual information across subsets of a partition [Jo97b]. It is directly
proportional to the conditional mutual information of the desired output given each dupset
itself (i.e., the mutual information between one subset and the target ¢ass) all other
subsets). It is inversely proportional to the difference between joint and total conditional mutual

123

information (i.e., shared information among all subsets). | define the first quantityfaseach

subsety;, and the second quantity s for an entire partition.

First, theKullback-Leibler distancéetween two discrete probability distributiopgX) and
g(X) is defined [CT91] as:

"$ dlx)
=2 p(X)Igg(—:?

The mutual information between discrete random variallesndY is defined [CT91] as the
Kullback-Leibler distance between joint and product distributions:

1
|
©
—
X
=
«Q
je)
—
X
N—
|
~><
o)
—
x
=
«Q
o
—_
X
<
N
MMM

H
=H(X)+H(Y)-H(X,Y) (chainrule)
H

The conditional mutual information of andY given Z is defined [CT91] as the change in
conditional entropy when the value &fis known:

1(X;Y12) =g H(X [Z)-H(X|Y,2)
=H(Y|2)-H(Y|X,2)

124

I now define thecommon informatiowf X, Y, andZ (the analogue df-way intersection in set
theory, except that it can have negative value):
1(X;Y;Z) = 4o 1(X;Y)=1(X;Y2)
=1(X;2)-1(X;2]Y)

=1(y;2)-1(v;21Y)
=1(X;2)-1(X;2]Y)
=1(y;2)-1(v;21Y)

The idea behind the modular mutual information score is that it should reward high
conditional mutual information between an attribute subset and the desired output given other
subsets (i.e each expert subnetwork will be allotted a large share of the Jvotkshould also
penalize high common information (i.e., the gating network is allotted more work relative to the
experts). Given these dicta, we can define the modular mutual information for a partition as
follows:

1(X: Y) =ger D(P(X, Xz .0 X, Y)I P) P(X)-... B(X,) ()

X={x,,.... X}
k

(X =0
i=1
k

(X ={X1. X5,.... X, }

i=1
which leads to the definition of; (modular mutual information) ang, (modular common
information):
1= et I(Xi;Y |X¢i)
Zaet HOGY) = H(X 1Y, X0 oo X0, X o0 X4)
Iy Zaer 1(Xai X533 X3 Y)

= def I(X;Y)_zli

i=1

=

Because the desired metric rewards Higind penalizes high, , we can define:

125

Y

Figure 26. Modular mutual information score for a size-2 partition

Figure 26 depicts the modular mutual information criterion for a partition with 2 subsets
andX,, whereY denotes the desired output.

2.2 Algorithms

The architectural metrics highlight the strengths of each learning architecture by estimating
the information gain from a memory form, and the distributional metrics for hierarchical mixture
models highlight the strength of each organization by estimating the distribution of work. My
preliminary design for distributional metrics for algorithms similarly attempts to estimate the
benefits of using a particular type of local or global optimization. The algorithms studied in this
dissertation include gradient (local optimization or delta-rule) learning, the EM algorithm
(another type of local optimization), and MCMC methods (global stochastic optimization or
Bayesian inference), though | have concentrated primarily on gradient algorithms. As for the
TDNN architecture, | use gradient learning as a baseline, so its metric can be considered a
constant (and need not be computed).

2.2.1 Value of Missing Data

A prototype distributional metric | considered for the EM algorithm is similar to a value-of-
information (VOI) measure [RN95] that measures the expected information gain from

126

interpolation of missing data. The design rationale is that EM is the only local optimization
algorithm available that can interpolate missing data, and should therefore be used when there is
enough data missing for its approximation to be worth while. This metric has not yet been fully
developed or evaluated, because VOI is a nonnegative measure, while EM does is not guaranteed
to achieve improved learning through missing data estimation [DLR77, Ne93].

2.2.2 Sample Complexity

Finally, the distributional metric for MCMC methods (specifically, the Metropolis algorithm
for simulated annealing [KGV83, Ne93, Ne96]) is based on the frequency of local optima.
Sample complexity estimation is useddonvergence analysfer MCMC methods [Gi96]. This
metric has not yet been fully developed or evaluated. Some preliminary comparative experiments
using gradient and MCMC learning, however, have shown that short-term convergence analysis
methods, such as learning speed curves [Ka95, Pe97] can provide quantitative indicators of the
necessity of global optimization.

127

D. Experimental Methodology

This appendix describes the experimental design for system evaluation, both component-wise
and integrated, and the results of some additional experiments that support the ones described in
Chapters 5 and 6.

1. Experiments using Metrics

My experimental approach to metric-based model selection and its evaluation builds on two
research applications that | have investigated: selection of compression techniques for
heterogeneous files, and selection of learning techniques (architectures, mixture models, and
training algorithms) for heterogeneous time series. The latter application of metric-based model
selection, which | refer to in this dissertation, @smposite learningis described in Chapter 3.

This section reports some additional relevant findings from the two research efforts.

1.1 Techniques and Lessons Learned from Heterogeneous File Compression

Heterogeneous fileare those that contain multiple types of data such as text, image, or audio.
We have developed an experimental data compressor for that outperforms commercial, general-
purpose compressors on heterogeneous files [HZ95]. It divides a file into fixed-length segments
and empirically analyzes each (cf. [Sa89, HM91]) forfiks typeand dominantedundancy type
For exampledictionary algorithms such as Lempel-Ziv coding are most effective with frequent
repetition of stringsrun length encodingon long runs of bits; andtatisticalalgorithms such as
Huffman codingandarithmetic coding when there is nonuniform distribution among characters.
These correspond to ouwedundancy metricsstring repetition ratio, average run length, and
population standard deviation of ordinal character value. The normalization function over these
metrics is calibrated on a corpus of homogeneous files. Using the metrics and file type, our
system predicts, and applies, the most effective algorithm and update (e.g., paging) heuristic for
the segment. In experiments on a second corpus of heterogeneous files, the system selected the
best of the three available algorithms on about 98% of the segments, yielding significant
performance wins on 95% of the test files [HZ95].

1.2 Adaptation to Learning from Heterogeneous Time Series

128

The analogy between compression and learning [Wa72] is especially strong for technique
selection from a database of components. Compression algorithms correspond to network
architectures in our framework; heuristics, to applicable methods (mixture models, learning
algorithm, and hyperparameters for Bayesian learning). Metric-based file analysis for
compression can be adapted to technique selection for heterogeneous time series learning. To
select among network architectures, we use indicators of temporal patterns typical of each;
similarly, to select among learning algorithms, we use predictors of their effectiveness. The
analogy is completed by the process of segmenting the file (corresponding to problem
decomposition by aggregation and synthesis of attributes) and concatenation of the compressed
segments (corresponding to fusion of test predictions).

The compression/learning analogy also provides some guidelines for metric calibration.
[HZ95] describes how multivariate Gamma distributions are empirically fitted for a homogeneous
corpus of 50 representative files, in order to select the algorithm that corresponds to the dominant
redundancy type. A similar nonlinear approximation procedure is applied to normalize
architectural and distributional metrics (separately) for comparison purposes. Note that
normalization is not needed when distributional metrics are being used to evaluate attribute

partitions, even though these are the same metrics used to select hierarchical mixture models.

2. Corpora for Experimentation

This section briefly describes the collection and synthesis of representative test beds for
testing specific learning components, isolated aspects of the composite learning system, and the

overall system.

2.1 Desired Properties

As explained in Sections 1.1.4 and 1.4.3, this dissertation focuses on decomposable learning
problems defined over heterogeneous time series. To briefly recap, a heterogeneous time series is
one containing data from multiple sources [SM93], and typically contains different embedded
temporal patterns (which can be formally characterized in terms of different memory forms
[Mo94]). These sources can therefore be thought to correspond to different “pattern-generating”
stochastic processes. A decomposable learning problem is one for which multiple subproblems

129

can be defined by systematic means (possibly based on heuristic search [BF81, Wi93, RN95,
KJ97] or other approximation algorithms [CLR90]). Some specific properties that characterize
most kinds of heterogeneous and decomposable time series, and are typically of interest for real-

world data, are as follows:

1. Heterogeneity multiple physical processes for which a stochastic process model is
known, hypothesized, or can be hypothesized and tested

2. Decomposabilitya known or hypothesized method for isolating one or more of these
processes (often published in the literature of the application domain)

3. Feasibility. evidence that this process is reasonably “homogeneous” (in the ideal case,
evidence that all the embedded processes are homogeneous)

These properties are present to some degree in the musical tune classification and crop
condition monitoring test beds. They can also be simulated in synthetic data, and | have done so

to a realistic extent.

2.1.1 Heterogeneity of Time Series

The crop condition monitoring test bed [HGL+98, HR98Db] is heterogeneous in that:

1. Meteorological, hydrological, physiological, and agricultural processes represent highly
disparate sources of data.

2. These processes are reflected in the observable phenomena (weather statistics, subjective
estimates of condition) through different stochastic processes (see Section 5.1.2).

3. The scale and structure of spatiotemporal statistics varies greatly: temporal granularity,
spatial granularity, and proportion of missing data all fluctuate from attribute to

attribute*

The musical tune classification test bed [HR98a, RH98] is heterogeneous in that:

% In this dissertation, | have applied simple averaging and downsampling methods to deal with this aspect
of heterogeneity for this test bed. Adaptation to scale and structure of large-scale geospatial data, however,
is an important topic for future work whereby this research may be refined and extended.

130

1. The signal preprocessing transforms produce training data that originates from different
“sources” (algorithms) and is inherently multimodal. (There is also a natural embedding
of the ideal attribute partition based on these transforms.)

2. The processes that each transform “extracts” are typically very different in terms of
signal waveshape [RH98] and therefore evdké&erent memory forms

2.1.2 Decomposability of Problems

The crop condition monitoring test bed [HGL+98, HR98b] is decomposable in that:

1. As the phased correlograms in Chapter 5 indicate, the memory forms manifest in
different components of the time series (typically different weeks of the growing season
and different magnitudes). The patterns also manifest to a certain extent within different
attributes, although this effect (which prescribes the specialist-moderator network) is
weaker than the “load balancing” effect.

2. As the comparative experiment using SRNs, TDNNs, and multilayer perceptrons
(feedforward ANNs) and the pseudo-HME fusion experiments show, the embedded
patterns can be isolated. Furthermore, use of different memory forms tends to distribute
the computational workload.

The musical tune classification test bed [HR98a, RH98] is decomposable in that:

1. The problem is inherently “factorizable” as defined in Appendix A.
2. The factorizations lend themselves well to separate SRNs (in this case, the same species:

input recurrent specialists and moderators).

2.2 Synthesis of Corpora

The synthesis of experimental corpora also emphasizes heterogeneity and decomposability,
but additionally focuses on typically hard problems that have traditionally been mitigated by the
use of constructive induction [Gu91, D096, 1096, Pe97]. An example of this isntbeular
parity problem, a member of th&XOR/parity family that is often used to demonstrate the
limitations of certain inducers [Gu91, Pe97], most (in)famously the single-layer perceptron

131

[MP69]. Modular parity simply defines the target concept as a combination (Cartesian product)
of parity functions defined on each subset, i.e.:

k
Y:”n

=Y, XY, %, XY,
Yi :Xil O Xi2 0.0 Xini
X;; OH ={o3

2.3 Experimental Use of Corpora

| use the synthetic and real-world test data to: calibrate functions for metric normalization;
experiment with metrics and learning components (especially mixture models); and evaluate

partition search as compared to exhaustive enumeration.

2.3.1 Fitting Normalization Functions

Normalization functions are calibrated based on test sets, both by hand and by histogramming
(as used in [HZ95]). Currently, the normalization corpora (for which esgtfof training data
constitutes a single point) is of insufficient volume to perform systematic learning from data
[Ri88]. In future work, | plan to collect and synthesize representative corpora for every
combination of learning architecture and available method, to promote the validity of the metrics
for all plausible configurations of “prescribed learning technique”.

2.3.2 Testing Metrics and Learning Components

My general directive for experiments with distributional metrics (especially those for
heirarchical mixture models) was to simultaneously use the metric to select a learning component
and to evaluate a candidate partition. By “simultaneous” | mean that the same metric was used in
both contexts without substantial additional computations (not that the choice was committed

concurrently).

2.3.3 Testing Partition Search
| generated numerous synthetic test sets to evaluate the partition enumerator, and to compare

various informed search algorithms over the partition state space. These test sets had the
common property that they were of significant difficulty (e.g., modular parity); decomposable

132

into well-balanced modulegrovidedthe partitioning algorithm was complete and empirically
sound; and demonstrated how a problem could be sufficiently decomposabléfora#iiotment

of computational resources. The fairness criterion means that the same number of trainable
weights is allotted throughout a modular network (i.e., a hierarchical mixture model) — thus, all
non-modular networks are being compared to mixture models whose specialists and moderators
have a total network complexity that is comparable. (This actually skews the balance in favor of
the non-modular inducers, because it disregards the possibility that parallel processing can be

used in concurrent training of “siblings” in a hierarchical mixture model.)

In some test sets | introduced a nontrivial, but tolerable, quantity of “mixing” or “crosstalk”
among modules. For the most part, the modular networks showed graceful degradatiah with
leastthe same quality as non-modular networks; however, this noise only made the partitioning
algorithm more difficult, so | omitted it from further experimentation. An interesting line of
future work, however, is to examine the robustness and incrementality of modular networks
[Hr96, RH98].

133

References

[AD91] H. Almuallim and T. G. Dietterich. Learning with Many Irrelevant Features. In
Proceedings of the National Conference on Artificial Intelligence (AAAJ-91) 129-134,
Anaheim, CA. MIT Press, Cambridge, MA, 1991.

[AHS85] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A Learning Algorithm for Boltzmann
Machines. Cognitive Scienged:147-169, 1985.

[AKA91] D. W. Aha, D. Kibler, and M. K. Albert. Instance-Based Learning Algorithms.
Machine Learning6:37-66.

[Am95] S.-I. Amari. Learning and Statistical Inference. The Handbook of Brain Theory and
Neural NetworksM. A. Arbib, editor, p. 522-526.

[BD87] P. J. Brockwell and R. A. DavisTime Series: Theory and MethodSpringer-Verlag,
New York, NY, 1987.

[BDKL92] K. Basye, T. Dean, J. Kirman, and M. Lejter. A Decision-Theoretic Approach to
Planning, Perception, and ContrdEEE Expert7(4):58-65, 1992.

[Be90] D. P. Benjamin, editorChange of Representation and Inductive Bi&duwer Academic
Publishers, Boston, 1990.

[BF81] A. Barr and E. A. Feigenbaum. Search, The Handbook of Artificial Intelligence,
Volume 1 p. 19-139. Addison-Wesley, Reading, MA, 1981.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Sto@&assification and Regression
Trees Wadsworth International Group, Belmont, CA, 1984.

[BGH89] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier Systems and Genetic
Algorithms. Artificial Intelligence 40:235-282, 1989.

[Bi95] C. M. Bishop. Neural Networks for Pattern Recognitio@larendon Press, Oxford, UK,
1995.

[BJR94] G. E. P. Box, G. M. Jenkins, and G.C. Reins€ime Series Analysis, Forecasting, and
Control (3% edition). Holden-Day, San Fransisco, CA, 1994.

[BM94] H. A. Bourlard and N. Morgan.Connectionist Speech Recdigyn: A Hybrid Approach
Kluwer Academic Publishers, Boston, MA, 1994.

[BMB93] J. W. Beauchamp, R. C. Maher, and R. Brown. Detection of Musical Pitch from
Recorded Solo Performancesn Proceedings of the $4Convention of the Audio Engineering
Society Berlin, Germany, 1993.

[Bo90] K. P. Bogart. Introductory Combinatorics, @ Edition. Harcourt Brace Jovanovich,
Orlando, FL, 1990.

134

[BR92] A. L. Blum and R. L. Rivest. Training a 3-Node Neural Network is NP-Complete.
Neural Networks5:117-127, 1992.

[Bro6] L. Breiman. Bagging PredictordVlachine Learning1996.

[BSCC89] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, AI&kRM
Monitoring System: A Case Study With Two Probabilistic Inference Techniques for Belief
Networks. InProceedings of ECAIM '89, the European Conference on Al in Medigiages
247-256, 1989.

[Bu98] D. Bullock. Personal communication, 1998.

[Ca93] C. Cardie. Using Decision Trees to Improve Case-Based Learning. In Proceedings of the
10" International Conference on Machine Learning, Amherst, MA, p. 25-32. Morgan-Kaufmann,
Los Altos, CA, 1993.

[CF82] P. R. Cohen and E. A. Feigenbaum. Learning and Inductive Inferentégellandbook
of Artificial Intelligence, Volume 3. 323-511. Addison-Wesley, Reading, MA, 1982.

[CH92] G. F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic
Networks from Data.Machine Learning9(4):309-347, 1992.

[Ch96] C. Chatfield. The Analysis of Time Series: An Introductior @dition) Chapman and
Hall, London, 1996.

[CKS+93] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, D. Freeman. AUTOCLASS: A
Bayesian Classification System.In Proceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI-93)pages 316-321, 1993.

[CLR9O] T. H. Cormen, C. E. Leiserson, and R. L. Rivesghtroduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[Co90] G. Cooper. The Computational Complexity of Probabilistic Inference using Bayesian
Belief Networks. Artificial Intelligence 42:393-405.

[CT91] T. M. Cover and J. A. ThomasElements of Information Thearydohn Wiley and Sons,
New York, NY, 1991.

[DH73] R. O. Duda and P. E. HarPattern Classification and Scene Analydi¢iley, New York,
NY, 1973.

[DL95] T. Dean and S.-H. Lin. Decomposition Techniques for Planning in Stochastic Domains.
In Procedings of the International Joint Conference on Atrtificial Intelligence (IJCAJ-2995.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood From Incomplete Data
Via the EM Algorithm. Journal of the Royal Statistical SocieB9(Series B):1-38.

[D096] S. K. Donoho. Knowledge-Guided Constructive InductioRh.D. thesis, Department of
Computer Science, University of lllinois at Urbana-Champaign, 1996.

135

[DP92] J. Principé and deVries. The Gamma Model — A New Neural Net Model for Temporal
Processing.Neural Networks5:565-576, 1992.

[DR95] S. K. Donoho and L. A. Rendell. Rerepresenting and Restructuring Domain Theories: A
Constructive Induction Approachlournal of Artificial Intelligence Researc2:411-446, 1995.

[EI90] J. L. Elman. Finding Structure in TimeCognitive Sciencel4:179-211, 1990.

[EVA98] R. Engels, F. Verdenius, and D. Ahaoint AAAI-ICML Workshop on Methodology of
Machine Learning: Task Decomposition, Problem Definition, and Technique Selel%@8.

[FD89] N. S. Flann and T. G. Dietterich. A Study of Explanation-Based Methods for Inductive
Learning. Machine Learning 4:187-226, reprinted irReadings in Machine Learningl. W.
Shavlik and T. G. Dietterich, editors. Morgan-Kaufmann, San Mateo, CA, 1990.

[Fro8] B. Frey. Personal communication, 1998.

[FS96] T. Freund and R. E. Schapire. Experiments with a New Boosting Algorithm. In
Proceedings of ICML-96

[GBD92] S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the Bias/Variance
Dilemna. Neural Computation4:1-58, 1992.

[GD88] D. M. Gaba and A. deAnda. A Comprehensive Anesthesia Simulation Environment: Re-
creating the Operating Room for Research and Trainkgesthesia69:387:394, 1988.

[Gi96] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editddarkov Chain Monte Carlo
in Practice Chapman and Hall, New York, NY, 1996.

[Go89] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning
Addison-Wesley, Reading, MA, 1989.

[Gr92] R. Greiner. Probabilistic Hill-Climbing: Theory and Applications. Rroceedings of the
9" Canadian Conference on Artificial Intelligencp. 60-67, J. Glasgow and R. Hadley, editors.
Morgan-Kaufmann, San Mateo, CA, 1992.

[Gra8] E. Grois. Qualitative and Quantitative Refinement of Partially Specified Belief Networks
by Means of Statistical Data FusiorMaster's thesis, Department of Computer Science,
University of lllinois at Urbana-Champaign, 1998.

[Gu9l] G. H. Gunsch. Opportunistic Constructive Induction: Using Fragments of Domain
Knowledge to Guide Constructior?h.D. thesis, Department of Computer Science, University of
lllinois at Urbana-Champaign, 1991.

[GW94] N. A. Gershenfeld and A. S. Weigend. The Future of Time Series: Learning and
Understanding. IimMime Series Prediction: Forecasting the Future and Understanding the Past
(Santa Fe Institute Studies in the Sciences of Complexity XV)S. Weigend and N. A.
Gershenfeld, editors. Addison-Wesley, Reading, MA, 1994.

[Ha89] D. Haussler. Quantifying Inductive Bias: Al Learning Algorithms and Valiant's Learning
Framework. Artificial Intelligence 36:177-221, 1989.

136

[Ha94] S. Haykin. Neural Networks: A Comprehensive FoundationMacmillan College
Publishing, New York, NY, 1994,

[Ha95] M. H. HassounFundamentals of Artificial Neural NetworksMIT Press, Cambridge,
MA, 1995.

[HB95] E. Horvitz and M. Barry. Display of Information for Time-Critical Decision Making. In
Proceedings of the Eleventh International Conference on Uncertainty in Artificial Intelligence
(UAI-95). Morgan-Kaufmann, San Mateo, CA, 1995.

[He91] D. A. Heckerman.Probabilistic Similarity Networks MIT Press, Cambridge, MA, 1991.

[He96] D. A. Heckerman.A Tutorial on Learning With Bayesian Network®icrosoft Research
Technical Report 95-06, Revised June 1996.

[HGL+98] W. H. Hsu, N. D. Gettings, V. E. Lease, Y. Pan, and D. C. Wilkins. A New Approach
to Multistrategy Learning from Heterogeneous Time SeriesPrisceedings of the International
Workshop on Multistrategy Learning998.

[Hi97] G. Hinton. Towards Neurally Plausible Bayesian Networks. Plenary Tatkrnational
Conference on Neural Networks (ICNN-9HApuston, TX, 1997.

[Hj94] J. S. U. Hjorth Computer Intensive Statistical Methods: Validation, Model Selection and
Bootstrap. Chapman and Hall, London, UK, 1994.

[HLB+96] B. Hayes-Roth, J. E. Larsson, L. Brownston, D. Gaba, and B. FlanaGarardian
Project Home PageURL: http://www-ksl.stanford.edu/projects/guardian/index.html

[HM91] G. Held and T. R. Marshall. Data Compression: Techniques and Application§, 3
edition. John Wiley and Sons, New York, NY, 1991.

[Hr90] T. Hrycej. Gibbs Sampling in Bayesian Networkgtrtificial Intelligence 46:351-363,
1990.

[Hr92] T. Hrycej. Modular Learning in Neural Networks: A Modularized Approach to Neural
Network Classification John Wiley and Sons, New York, NY, 1992.

[HR76] L. Hyafil and R. L. Rivest. Constructing Optimal Binary Decision Trees is NP-
Complete.Information Processing Letters, 5:15-17, 1996.

[HR98a] W. H. Hsu and S. R. Ray. A New Mixture Model for Concept Learning From Time
Series. InProceedings of the 1998 Joint AAAI-ICML Workshop on Time Series Anatgsis
appear.

[HR98b] W. H. Hsu and S. R. Ray. Quantitative Model Selection for Heterogeneous Time

Series. InProceedings of the 1998 Joint AAAI-ICML Workshop on Methodology of Machine
Learning to appear.

137

[Hs95] W. H. Hsu. Hidden Markov Model Learning With Elman Recurrent NetwoHisal
Project Report, CS442 (Artificial Neural Networkg)niversity of lllinois at Urbana-Champaign,
unpublished, December, 1995.

[Hs97] W. H. Hsu. A Position Paper on Statistical Inference Techniques Which Integrate
Bayesian and Stochastic Neural Network Models. Pnoceedings of the International
Conference on Neural Networks (ICNN-9FApuston, TX, June, 1997.

[Hu98] T. S. Huang. Personal communication, February, 1998.

[HZ95] W. H. Hsu and A. E. Zwarico. Automatic Synthesis of Compression Techniques for
Heterogeneous FilesSoftware: Practice and Experienc25(10): 1097-1116, 1995.

[1096] T. loerger.Change of Representation in Machine Learning, and an Application to Protein
Tertiary Structure PredictionPh.D. thesis, Department of Computer Science, University of
lllinois at Urbana-Champaign, 1996.

[JJ93] M. I. Jordan and R. A. Jacobs. Supervised Learning and Divide-and-Conquer: A
Statistical Approach. InProceedings of the Tenth International Conference on Machine
Learning Amherst, MA, 1993.

[JJ94] M. I. Jordan and R. A. Jacobs. Hierarchical Mixtures of Experts and the EM Algorithm.
Neural Computation6:181-214, 1994.

[JJB91] R. A. Jacobs, M. I. Jordan, and A. G. Barto. Task Decomposition Through Competition
in a Modular Connectionist Architecture: The What and Where Vision Ta€kgnitive Science
15:219-250, 1991.

[JONH91] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive Mixtures of
Local Experts.Neural Computation3:79-87, 1991.

[JK86] C. A. Jones and J.R. KininCERES-Maize: a Simulation Model of Maize Growth and
DevelopmentTexas A&M Press. College Station, TX, 1986.

[JKP94] G. John, R. Kohavi, and K. Pfleger. Irrelevant Features and the Subset Selection
Problem. InProceedings of the MInternational Conference on Machine Learnjng 121-129,
New Brunswick, NJ. Morgan-Kaufmann, Los Altos, CA, 1994.

[Jo87] M. I. Jordan. Attractor Dynamics and Parallelism in a Connectionist Sequential Machine.
In Proceedings of the Eighth Annual Conference of the Cognitive Science S@ciéB1-546.
Erlbaum, Hillsdale, NJ, 1987.

[Jo97a] M. 1. Jordan. Approximate Inference via Variational Techniqueslinvited talk,
International Conference on Uncertainty in Artificial Intelligence (UAI-97), August, 1997. URL:
http://www.ai.mit.edu/projects/jordan.html

[J097b] M. I. Jordan. Personal communication, August, 1997.

[Ka95] C. M. Kadie. SEER: Maximum Likelihood Regression for Learning Speed CuiRbD.
thesis, University of Illinois, 1995.

138

[KGV83] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by Simulated
Annealing. Science220(4598):671-680, 1983.

[Ki86] J. Kittler. Feature Selection and Extractiocademic Press, New York, NY, 1986.
[Ki92] K. Kira. New Approaches to Feature Selection, Instance-Based Learning, and
Constructive Induction.Master’s thesis, Department of Computer Science, University of lllinois

at Urbana-Champaign, 1992.

[KJ97] R. Kohavi and G. H. John. Wrappers for Feature Subset Selechdificial Intelligence,
Special Issue on Relevance(92):273-324, 1997.

[Ko90] T. Kohonen. The Self-Organizing MagRroceedings of the IEEEF8:1464-1480, 1990.

[Ko94] I. Kononenko. Estimating Attributes: Analysis and ExtensionRelief In Proceedings
of the European Conference on Machine LearniagBergadano and L. De Raedt, editors. 1994.

[Ko95] R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs.
Ph.D. thesis, Department of Computer Science, Stanford University, 1995.

[KS96] R. Kohavi and D. SommerfieldMLC++: Machine Learning Library in C++, Utilities
v2.0. URL: http://www.sgi.com/Technology/mlc

[KSD96] R. Kohavi, D. Sommerfield, and J. Dougherty. Data Mining UsMgC++: A
Machine Learning Library in C++. InTools with Artificial Intelligence p. 234-245, IEEE
Computer Society Press, Rockville, MD, 1996. URiLp://www.sgi.com/Technology/mic

[KR92] K. Kira and L. A. Rendell. The Feature Selection Problem: Traditional Methods and a
New Algorithm. InProceedings of the National Conference on Atrtificial Intelligence (AAAJ-92)
p. 129-134, San Jose, CA. MIT Press, Cambridge, MA, 1992.

[KV91] M. Kearns and U. Vazirani. Introduction to Computational Learning TheoryMIT
Press, Cambridge, MA, 1991.

[Le89] K.-F. Lee. Automatic Speech Recognition: The Development of the SPHINX System
Kluwer Academic Publishers, Boston, MA, 1989.

[LFL93] T. Li, L. Fang, and K. Q-Q. Li. Hierarchical Classification and Vector Quantization
With Neural Trees.Neurocomputing:119-139, 1993.

[Lo95] D. Lowe. Radial Basis Function Networks. Tine Handbook of Brain Theory and Neural
Networks M. A. Arbib, editor, p. 779-782.

[LWYB9O0] L. Liu, D. C. Wilkins, X. Ying, and Z. Bian. Minimum Error Tree Decomposition.
In Proceedings of the Sixth Conference on Uncertainty iifigiel Intelligence (UAI-90) 1990.

[LWH90] K. J. Lang, A. H. Waibel, and G. E. Hinton. A Time-Delay Neural Network
Architecture for Isolated Word RecognitioNeural Networks3:23-43, 1990.

139

[LY97] Y. Liu, and X. Yao. Evolving Modular Neural Networks Which Generalise Well. In
Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC-
97), p. 605-610, Indianapolis, IA, 1997.

[Ma89] C. J. Matheus. Feature Construction: An Analytical Framework and Application to
Decision TreesPh.D. thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1989.

[Mi83] R. S. Michalski. A Theory and Methodology of Inductive LearningArtificial
Intelligence 20(2):111-161, reprinted iReadings in Knowledge Acquisition and Learnigg G.
Buchanan and D. C. Wilkins, editors. Morgan-Kaufmann, San Mateo, CA, 1993.

[Mi80] T. M. Mitchell. The Need for Biases in Learning GeneralizationBechnical Report
CBM-TR-117, Department of Computer Science, Rutgers University, New Brunswick, NJ, 1980,
reprinted inReadings in Machine Learning. W. Shavlik and T. G. Dietterich, editors. Morgan-
Kaufmann, San Mateo, CA, 1990.

[Mi82] T. M. Mitchell. Generalization as Searcttrtificial Intelligence 18(2):203-226.

[Mi93] R. S. Michalski. Toward a Unified Theory of Learning: Multistrategy Task-Adaptive
Learning. InReadings in Knowledge Acquisition and Learnimy G. Buchanan and D. C.
Wilkins, eds. Morgan-Kaufmann, San Mateo, CA, 1993.

[Mi97] T. M. Mitchell. Machine Learning.McGraw-Hill, New York, NY, 1997.

[MMR97] K. Mehrotra, C. K. Mohan, and S. Rank&lements of Artificial Neural Networks
MIT Press, Cambridge, MA, 1997.

[MN83] P. McCullagh and J. A. Nelder. Generalized Linear ModelsChapman and Hall,
London, 1983.

[Mo94] M. C. Mozer. Neural Net Architectures for Temporal Sequence Processing.inme
Series Prediction: Forecasting the Future and Understanding the Past (Santa Fe Institute Studies
in the Sciences of Complexity X\, S. Weigend and N. A. Gershenfeld, editors. Addison-
Wesley, Reading, MA, 1994.

[MP69] M. L. Minsky and S. PapertPerceptrons: An Introduction to Computational Geometry,
first edition. MIT Press, Cambridge, MA, 19609.

[MR86] J. L. McClelland and D. E. RumelhartParallel Distributed Processing MIT Press,
Cambridge, MA, 1986.

[My95] P. Myllyméki. Mapping Bayesian Networks to Boltzmann Machines.Pinceedings of
Applied Decision Technologies 199iages 269-280, 1995.

[Ne92] R. M. Neal. Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo
Method. Technical Report CRG-TR-92-1, Department of Computer Science, University of
Toronto, 1992.

[Ne93] R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods
Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

140

[Ne96] R. M. Neal. Bayesian Learning for Neural NetworksSSpringer-Verlag, New York, NY,
1996.

[Pe88] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
Morgan-Kaufmann, San Mateo, CA, 1988.

[Pe95] J. Pearl. Bayesian Networks.The Handbook of Brain Theory and Neural Netwoids
A. Arbib, editor, p. 149-153.

[Pe97] E. Pérez. Learning Despite Complex Attribute Interaction: An Approach Based on
Relational OperatorsPh.D. thesis, Department of Computer Science, University of lllinois at
Urbana-Champaign, 1997.

[PL98] J. Principé, C. LefebvrNeuroSolutions v3.0NeuroDimension, Gainesville, FL, 1998.
URL: http://www.nd.com

[Qu85] R. Quinlan. Induction of Decision TreedMachine Learning1:81-106, 1985.

[Ra90] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech RecognitionProceedings of the IEEEeprinted inReadings in Speech Recdgm, A.
Waibel and K.-F. Lee, editors. Morgan Kaufmann, San Mateo, CA, 1990.

[RCK89] J. G. Rueckl, K. R. Cave, and S. M. Kosslyn. Why are “What” and “Where” Processed
by Separate Cortical Visual Systems? A Computational Investigatibvurnal of Cognitive
Neurosciencel:171-186.

[RH98] S. R. Ray and W. H. Hsu. Self-Organized-Expert Modular Network for Classification of
Spatiotemporal Sequencedournal of Intelligent Data Analysj$o appear.

[Ri88] J. A. Rice. Mathematical Statistics and Data AnalysidVadsworth and Brooks/Cole
Advanced Books and Software, Pacific Grove, CA, 1988.

[RK96] S. R. Ray and H. Kargupta. A Temporal Sequence Processor Based on the Biological
Reaction-Diffusion Proces§omplex System8(4):305-327, 1996.

[RNH+98] C. E. Rasmussen, R. M. Neal, and G. Hint@ata for Evaluating Learning in Valid
Experiments (DELVE) Department of Computer Science, University of Toronto, 1996. URL:
http://www.cs.toronto.edu/~delve/delve.html

[RN95] S. Russell and P. NorvigAtrtificial Intelligence: A Modern Approach Prentice Hall,
Englewood Cliffs, NJ, 1995.

[R098] D. Roth. Personal communication, 1998.
[RR93] H. Ragavan and L. A. Rendell. Lookahead Feature Construction for Learning Hard

Concepts. InProceedings of the 1993 International Conference on Machine Learning (ICML-
93),June, 1993

141

[RS88] H. Ritter and K. Schulten. Kohonen's Self-Organizing Maps: Exploring Their
Computational Capabilities. IRroceedings of the International Conference on Neural Networks
(ICNN-88) p. 109-116, San Diego, CA, 1988.

[RS90] L. A. Rendell and R. Seshu. Learning Hard Concepts Through Constructive Induction:
Framework and RationaleComputational Intelligenges:247-270, 1990.

[RV97] P. Resnick and H. R. Varian. Recommender Syste@emmunications of the ACM
40(3):56-58, 1997.

[Sa89] G. Salton.Automatic Text ProcessingAddison Wesley, Reading, MA, 1989.

[Sa97] M. Sahami. Applications of Machine Learning to Information Access (AAAI Doctoral
Consortium Abstract). IfProceedings of the #4National Conference on Atrtificial Intelligence
(AAAI-97) p. 816, Providence, RI, 1997.

[Sa98] W. S. Sarle, editor.Neural Network FAQ periodic posting to the Usenet newsgroup
comp.ai.neural-netJRL: ftp:/ftp.sas.com/pub/neural/FAQ.html

[Sc97] D. Schuurmans. A New Metric-Based Approach to Model SelectiorPrdceedings of
the Fourteenth National Conference on Atrtificial Intelligence (AAAI;§7)552-558.

[Se98] C. Seguin.Models of Neurons in the Superior Colliculus and Unsupervised Learning of
Parameters from Time SeriesPh.D. thesis, Department of Computer Science, University of
lllinois at Urbana-Champaign, 1998.

[Sh95] Y. Shahar. A Framework for Knowledge-Based Temporal Abstractiostanford
University, Knowledge Systems Laboratory Technical Report 95-29, 1995. URRh:7//www-
smi.stanford.edu/pubs/SMI_Abstracts/SMI-95-0567.html

[SM86] R. E. Stepp lll and R. S. Michalski. Conceptual Clustering: Inventing Goal-Oriented
Classifications of Structured Objects. Meachine Learning: An Artificial Intelligence Approach

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Morgan-Kaufmann, San Mateo,
CA, 1986.

[SM93] B. Stein and M. A. Meredith.The Merging of the SensedIT Press, Cambridge, MA,
1993.

[St77] M. Stone. An Asymptotic Equivalence of Choice of Models by Cross-Validation and
Akaike’s Criterion. Journal of the Royal Statistical Society Serie83B:44-47.

[Th96] S. Thrun.Explanation-Based Neural Network Learningluwer Academic Publishers,
Norwell, MA, 1996.

[TK94] H. M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press,
San Diego, CA, 1984.

[TSN90] G. G. Towell, J. W. Shavlik, M. O. Noordewier. Refinement of Approximate Domain

Theories by Knowledge-Based Neural Networksn Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI-9@ages 861-866, 1990.

142

[Vi67] A. J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm. IEEE Transactions on Information Theord3(2):260-269, 1967.

[Vi98] R. Vilalta. On the Development of Inductive Learning Algorithms: Generating Flexible
and Adaptable Concept Representation®h.D. thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1998.

[Wa72] S. Watanabe. Pattern Recognition as Information Compressidrtoihtiers of Pattern
RecognitionS. Watanabe, editor. Academic Press, San Diego, CA, 1972.

[Wa85] S. WatanabeRattern Recognition: Human and Mechanicabhn Wiley and Sons, New
York, NY, 1985.

[Wa98] B. Wah. Personal communication, January, 1998.
[Wi93] P. H. Winston. Artificial Intelligence, 3' Edition. Addison-Wesley, Reading, MA, 1993.

[WM94] J. Wnek and R. S. Michalski. Hypothesis-Driven Constructive Induction in AQ17-HCI:
A Method and ExperimentsMachine Learning14(2):139-168, 1994.

[W092] D. H. Wolpert. Stacked GeneralizatioNeural Networks5:241-259, 1992.

[WCB86] D. C. Wilkins, W. J. Clancey, and B. G. Buchanamn Overview of the Odysseus
Learning Apprentice Kluwer Academic Press, New York, NY, 1986.

[WS97] D. C. Wilkins and J. A. Sniezek. DC-ARM: Automation for Reduced Manning
Knowledge Based Systems Laboratory Technical Report UIUC-BI-KBS-97-012. Beckman
Institute, UIUC, 1997.

[Wz89] R. J. Williams and D. Zipser. A Learning Algorithm for Continually Running Fully
Recurrent Neural Network&leural Computatiori(2):270-280.

[ZMW93] X. Zhang, J. P. Mesirov, and D. L. Waltz. A Hybrid System for Protein Secondary
Structure Prediction. Preprint, Journal of Molecular Biology, 1993.

143

Curriculum Vitae

William Henry Hsu was born on October 1, 1973 in Atlanta, Georgia. He graduated in June,
1989 from Severn School in Severna Park, Maryland, where he was a National Merit Scholar. In
May, 1993, he was awarded the Outstanding Senior Award from the Department of Computer
Science at the Johns Hopkins University in Baltimore, Maryland, and received dual bachelor of
science degrees in Computer Science and Mathematical Sciences, with honors. He also received a
concurrent Master of Science in Engineering from the Johns Hopkins University in May, 1993.
After entering the graduate program in Computer Science at the University of lllinois at Urbana-
Champaign, he joined the research group of Professor Sylvian R. Ray in 1996. He was awarded
the Ph.D. degree in 1998 for his work on time series learning with probabilistic networks, an
approach integrating constructive induction, model selection, and hierarchical mixture models for
learning from heterogeneous time series. He has presented research papers at various scientific
conferences and workshops on artificial intelligence, intelligent systems for molecular biology,
and artificial neural networks. His research interests include machine learning and data mining,
time series analysis, probabilistic reasoning for decisigupsrt and control automation, neural

computation, and intelligent computer-assisted instruction.

144

