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Heterogeneous Information Networks

• Multiple object types and/or multiple link types
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1. Homogeneous networks are Information loss projection of heterogeneous networks!
2. New problems are emerging in heterogeneous networks!

The Facebook Network

Directly Mining information richer heterogeneous networks
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• Why Heterogeneous Information Networks?

• Entity Recommendation

• Information Diffusion

• Ideology Detection

• Summary
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Recommendation Paradigm
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recommender system recommendation

user

feedback

external knowledge

product features

community user-
item feedback

Collaborative Filtering
E.g., K-Nearest Neighbor (Sarwar WWW’01), Matrix 
Factorization (Hu ICDM’08, Koren IEEE-CS’09), 
Probabilistic Model (Hofmann SIGIR’03)

Content-Based Methods
E.g., (Balabanovic Comm. ACM’ 97, Zhang SIGIR’02)

Hybrid Methods
E.g., Content-Based CF (Antonopoulus, IS’06), 
External Knowledge CF (Ma WSDM’11)



Problem Definition
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recommender system recommendation

user

feedback

information network

implicit user 
feedback

hybrid collaborative filtering
with information networks



Hybrid Collaborative Filtering with Networks

• Utilizing network relationship information can
enhance the recommendation quality

• However, most of the previous studies only use
single type of relationship between users or items
(e.g., social network Ma,WSDM’11, trust relationship
Ester, KDD’10, service membership Yuan, RecSys’11)
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The Heterogeneous Information Network View 
of Recommender System
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Relationship Heterogeneity Alleviates Data Sparsity
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# of users or items

A small number
of users and items
have a large
number of ratings

Most users and items have
a small number of ratings
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Collaborative filtering methods suffer from data sparsity issue

• Heterogeneous relationships complement each other

• Users and items with limited feedback can be connected to the

network by different types of paths

• Connect new users or items (cold start) in the information

network



Relationship Heterogeneity Based Personalized 
Recommendation Models
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Different users may have different behaviors or preferences

Aliens

James Cameron fan

80s Sci-fi fan

Sigourney Weaver fan

Different users may be
interested in the same
movie for different reasons

Two levels of personalization
Data level
• Most recommendation methods use

one model for all users and rely on

personal feedback to achieve

personalization

Model level
• With different entity relationships, we

can learn personalized models for

different users to further distinguish

their differences



Preference Propagation-Based Latent Features
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Alice

Bob

Kate Winslet

Naomi Watts

Titanic

revolutionary 
road

skyfall

King Konggenre: drama

Sam Mendes

tag: Oscar NominationCharlie

Generate L different 
meta-path (path types)

connecting users 
and items

Propagate user 
implicit feedback 
along each meta-

path

Calculate latent-
features for users 
and items for each 

meta-path with NMF
related method

Ralph Fiennes



L
user-cluster similarity

Recommendation Models
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Observation 1: Different meta-paths may have different importance

Global Recommendation Model

Personalized Recommendation Model

Observation 2: Different users may require different models

ranking score

the q-th meta-path

features for user i and item j

c total soft user clusters

(1)

(2)



Parameter Estimation
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• Bayesian personalized ranking (Rendle UAI’09)

• Objective function

min
Θ

sigmoid function

for each correctly ranked item pair
i.e., 𝑢𝑖 gave feedback to 𝑒𝑎 but not 𝑒𝑏

Soft cluster users 
with NMF + k-means

For each user 
cluster, learn one 

model with Eq. (3)

Generate 
personalized model 
for each user on the 

fly with Eq. (2)

(3)

Learning Personalized Recommendation Model



Experiment Setup

• Datasets

• Comparison methods:

• Popularity: recommend the most popular items to users

• Co-click: conditional probabilities between items

• NMF: non-negative matrix factorization on user feedback

• Hybrid-SVM: use Rank-SVM with plain features (utilize

both user feedback and information network)
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Performance Comparison
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HeteRec personalized recommendation (HeteRec-p) 
provides the best recommendation results



Performance under Different Scenarios
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HeteRec–p consistently outperform other methods in different scenarios
better recommendation results if users provide more feedback
better recommendation for users who like less popular items

p p

user



Contributions

• Propose latent representations for users and items
by propagating user preferences along different
meta-paths

• Employ Bayesian ranking optimization technique to
correctly evaluate recommendation models

• Further improve recommendation quality by
considering user differences at model level and
define personalized recommendation models

• Two levels of personalization
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Entity Recommendation in Information
Networks with Implicit User Feedback

(RecSys’13, WSDM’14a)
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Information Diffusion in Networks

• Action of a node is triggered by the actions of their 
neighbors
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Linear Threshold Model

• [Granovetter, 1978]

• If the weighted activation number of its neighbors is bigger 

than a pre-specified threshold 𝜃𝑢, the node u is going to be 

activated

• In other words

• 𝑝𝑢(𝑡 + 1) = 𝐸[1  𝑣∈Γ 𝑢 𝑤𝑣,𝑢𝛿 𝑢, 𝑡 > 𝜃𝑢 ]
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Heterogeneous Bibliographic Network

• Multiple types of objects

• Multiple types of links
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Derived Multi-Relational Bibliographic Network

• Collaboration: Author-Paper-Author

• Citation: Author-Paper->Paper-Author

• Sharing Co-authors: Author-Paper-Author-Paper-Author

• Co-attending venues: Author-Paper-Venue-Paper-Author
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How to generate these meta-paths ?
PathSim: Sun et.al, VLDB’11



How Topics Are Propagated among Authors?

• To Apply Existing approaches

• Select one relation between authors (say, 

A-P-A)

• Use all the relations, but ignore the relation 

types

• Do different relation types play 
different roles?

• Need new models!
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Two Assumptions for Topic Diffusion in Multi-
Relational Networks

• Assumption 1: Relation independent diffusion
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Model-level aggregation



• Assumption 2: Relation interdependent diffusion
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Relation-level aggregation



Two Models under the Two Assumptions

• Two multi-relational linear threshold models

• Model 1: MLTM-M

• Model-level aggregation

• Model 2: MLTM-R

• Relation-level aggregation
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MLTM-M

• For each relation type k

• The activation probability for object i at time t+1:

• The collective model

• The final activation probability for object i is an aggregation 

over all relation types
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Properties of MLTM-M
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MLTM-R

• Aggregate multi-relational network with different 
weights

• Treat the activation as in a single-relational network

•
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To make sure the activation probability non-negative, 
weights 𝛽′𝑠 are required non-negative



Properties of MLTM-R
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How to Evaluate the Two Models?

• Test on the real action log on multiple topics!

• 𝐴𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑔: {< 𝑢𝑖 , 𝑡𝑖 >}

• Diffusion model learning from action log

• MLE estimation over 𝛽′𝑠
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Two Real Datasets

• DBLP

• Computer Science

• Relation types

• APA, AP->PA, APAPA, APVPA 

• APS

• Physics

• Relation types

• APA, AP->PA, APAPA, APOPA 
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Topics Selected

• Select topics with increasing trends
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Evaluation Methods

• Global Prediction

• How many authors are activated at t+1

• Error rate = ½(predicted#/true# + true#/predicted#)-1

• Local Prediction

• Which author is likely to be activated at t+1

• AUPR (Area under Precision-Recall Curve)
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Global Prediction
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Local Prediction - AUPR

• 1: Different Relation Play Different Roles in Diffusion 
Process

• 2: Relation-Level Aggregation is better than Model-
Level Aggregation
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Case Study
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Prediction Results on “social network” Diffusion
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WIN!
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• Topic-Factorized Ideal Point Estimation Model for 
Legislative Voting Network (KDD’14, Gu, Sun et al.)
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Background

Federal 
Legislation

(bill)
Law

The House
Senate

Ronald Paul

Bill 1 Bill 2 ……

Barack Obama

Ronald Paul

liberal conservative

Politician

Republican Democrat

Barack Obama

41

United Stated Congress

The House Senate



Legislative Voting Network
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Problem Definition

Input: 
Legislative Network

Output:
𝒙𝑢: Ideal Points for Politician 𝑢
𝒂𝑑: Ideal Points for Bill 𝑑
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𝒙𝑢’s on different topics



Existing Work

• 1-dimensional ideal point model (Poole and 
Rosenthal, 1985; Gerrish and Blei, 2011)

• High-dimensional ideal point model (Poole and 
Rosenthal, 1997)

• Issue-adjusted ideal point model (Gerrish and Blei, 
2012)
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Motivations
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Topic 1
Topic 2
Topic 3
Topic 4

• Voters have different positions on different topics.

• Traditional matrix factorization method cannot give the meanings for 
each dimension.

𝑀 𝑈≈ ⋅ 𝑉𝑇

𝑘𝑡ℎ latent factor

• Topics of bills can influence politician’s voting, and the voting behavior 
can better interpret the topics of bills as well.

Topic Model:
• Health
• Public Transport
• …

Voting-guided Topic Model:
• Health Service
• Health Expenses
• Public Transport
• …



Topic-Factorized IPM
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𝑢 𝑑

𝑤

Politicians
Bills

Terms

Heterogeneous Voting Network

𝑛(𝑑, 𝑤)
𝑣𝑢𝑑

Entities:
• Politicians
• Bills
• Terms

Links:
• (𝑃, 𝐵)
• (𝐵, 𝑇)

Parameters to maximize the 
likelihood of generating two 
types of links:
• Ideal points for politicians
• Ideal points for bills
• Topic models



Text Part
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Politicians
Bills

Terms



Text Part

• We model the probability of each word in each 
document as a mixture of categorical distributions, as 
in PLSA (Hofmann, 1999) and LDA (Blei et al., 2003)

𝑑 𝑘 𝑤
𝜃𝑑𝑘 = 𝑝(𝑘|𝑑) 𝛽𝑘𝑤 = 𝑝(𝑤|𝑘)

Bill Topic Word

𝒘𝑑 = 𝑛 𝑑, 1 , 𝑛 𝑑, 2 ,… , 𝑛 𝑑,𝑁𝑤

𝑝 𝒘𝑑 𝜽,𝜷 ∝ 

𝑤

( 

𝑘

𝜃𝑑𝑘𝛽𝑘𝑤)

𝑛(𝑑,𝑤)

𝑝 𝑾 𝜽,𝜷 ∝ 

𝑑

 

𝑤

( 

𝑘

𝜃𝑑𝑘𝛽𝑘𝑤)

𝑛(𝑑,𝑤)
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Voting Part
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Politicians
Bills

Terms

Intuitions:
• The more similar of 

the ideal points of u
and d, the higher 
probability of “YEA” 
link

• The higher portion a 
bill belongs to topic k, 
the higher weight of 
ideal points on topic k



Voting Part

YEA
𝑝 𝑣𝑢𝑑 = 1 = 𝜎( 

𝑘

𝜃𝑑𝑘𝑥𝑢𝑘𝑎𝑑𝑘 + 𝑏𝑑)

𝑥𝑢1 𝑥𝑢2 𝑥𝑢𝑘 𝑥𝑢𝐾

𝑎𝑑1 𝑎𝑑2 𝑎𝑑𝑘 𝑎𝑑𝐾

𝒙𝑢

𝒂𝑑

Topic
1

Topic
2

…… Topic

𝑘
Topic

𝐾
……

0 1 -1 1 1 1 1 1

0 0 -1 1 1 1 -1 1

1 1 1 1 -1 1 0 0

𝑢1

𝑢2

𝑢𝑁𝑈

𝑑1 𝑑2 𝑑𝑁𝐷
……

…
…

User-Bill voting matrix 𝑽

 𝑟𝑢𝑑 =  

𝑘=1

𝐾

𝑥𝑢𝑘𝑎𝑑𝑘

 𝑟𝑢𝑑 =  

𝑘=1

𝐾

𝜃𝑑𝑘𝑥𝑢𝑘𝑎𝑑𝑘

𝑝 𝑣𝑢𝑑 = −1 = 1 − 𝜎( 

𝑘

𝜃𝑑𝑘𝑥𝑢𝑘𝑎𝑑𝑘 + 𝑏𝑑)
NAY

Voter 𝑢

Bill 𝑑

𝑝 𝑽 𝜽,𝑿, 𝑨, 𝒃 =  

𝑢,𝑑 :𝑣𝑢𝑑≠0

(𝑝 𝑣𝑢𝑑 = 1
1+𝑣𝑢𝑑
2 𝑝 𝑣𝑢𝑑 = −1

1−𝑣𝑢𝑑
2 )
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𝑥𝑢1

𝑥𝑢𝑘

𝑥𝑢𝐾

𝑎𝑑1

𝑎𝑑𝑘

𝑎𝑑𝐾

…
…

…
…

𝜃𝑑𝑘

𝜃𝑑1

𝜃𝑑𝐾

𝑥𝑢𝑘 ∈ 𝑹

𝑎𝑑𝑘 ∈ 𝑹

𝐼{𝑣𝑢𝑑=1} 𝐼{𝑣𝑢𝑑=−1}



Combining Two Parts Together

• The final objective function is a linear combination of the 
two average log-likelihood functions over the word links 
and voting links.

• We also add an 𝑙2 regularization term to 𝐴 and 𝑋 to reduce 
over-fitting.
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Learning Algorithm

• An iterative algorithm where ideal points related 
parameters (𝑋, 𝐴, 𝑏) and topic model related 
parameters (𝜃, 𝛽) enhance each other.

• Step 1: Update 𝑋, 𝐴, 𝑏 given 𝜃, 𝛽
• Gradient descent

• Step 2: Update 𝜃, 𝛽 given 𝑋, 𝐴, 𝑏
• Follow the idea of expectation-maximization (EM) algorithm: 

maximize a lower bound of the objective function in each iteration
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Learning Algorithm

• Update 𝜃: A nonlinear constrained optimization problem. 

Remove the constraints by a logistic function based transformation:

and update 𝜇𝑑𝑘 using gradient descent.

• Update 𝛽:

Since 𝛽 only appears in the topic model part, we use the same 
updating rule as in PLSA:

where

𝑒𝜇𝑑𝑘

1 +  𝑘′=1
𝐾−1 𝑒𝜇𝑑𝑘′

1

1 +  𝑘′=1
𝐾−1 𝑒𝜇𝑑𝑘′

if 1 ≤ 𝑘 ≤ 𝐾 − 1

if 𝑘 = 𝐾

𝜃𝑑𝑘 =
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Data Description

• Dataset:

• U.S. House and Senate roll call data in the years between 1990 

and 2013.∗

• 1,540 legislators

• 7,162 bills

• 2,780,453 votes (80% are “YEA”)

• Keep the latest version of a bill if there are multiple versions.

• Randomly select 90% of the votes as training and 10% as 

testing.

∗
Downloaded from http://thomas.loc.gov/home/rollcallvotes.html
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Evaluation Measures

• Root mean square error (RMSE) between the 
predicted vote score and the ground truth

RMSE = 
 𝑢,𝑑 :𝑣𝑢𝑑≠0

1+𝑣𝑢𝑑
2
−𝑝 𝑣𝑢𝑑=1

2

𝑁𝑉

• Accuracy of correctly predicted votes (using 0.5 as a 
threshold for the predicted accuracy)

Accuracy = 
 𝑢,𝑑(𝐼 𝑝 𝑣𝑢𝑑=1 >0.5 && 𝑣𝑢𝑑=1

+𝐼 𝑝 𝑣𝑢𝑑=1 <0.5 && 𝑣𝑢𝑑=−1
)

𝑁𝑉

• Average log-likelihood of the voting link

AvelogL = 
 𝑢,𝑑 :𝑣𝑢𝑑≠0

1+𝑣𝑢𝑑
2
log 𝑝 𝑣𝑢𝑑=1 +

1−𝑣𝑢𝑑
2
log 𝑝(𝑣𝑢𝑑=−1)

𝑁𝑉
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Experimental Results

Training Data set Testing Data set
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Parameter Study 

Parameter study on 𝜆 Parameter study on 𝜎 (regularization 
coefficient)
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𝐽 𝜽, 𝜷, 𝑿, 𝑨, 𝒃 = 1 − 𝜆 ⋅ 𝑎𝑣𝑒𝑙𝑜𝑔𝐿 𝑡𝑒𝑥𝑡 + 𝜆 ⋅ 𝑎𝑣𝑒𝑙𝑜𝑔𝐿(𝑣𝑜𝑡𝑖𝑛𝑔) −
1

2𝜎2
( 

𝑢

𝒙𝒖 2
2
+ 

𝑑

𝒂𝑑 2
2
)



Foreign

Educatio
n

Individual Property

Militar
yFinancial Institution

Law

Health Service

Health Expenses

Funds

Public Transportation

Ronald Paul Barack Obama Joe Lieberman

Case Studies

• Ideal points for three famous politicians: (Republican, Democrat)

• Ronald Paul (R), Barack Obama (D), Joe Lieberman (D)
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Case Studies

• Scatter plots over selected dimensions:
(Republican, Democrat)
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𝑥𝑢𝑘

Case Studies

𝑝 𝑣𝑢𝑑 = 1 = 𝜎( 

𝑘

𝜃𝑑𝑘𝑥𝑢𝑘𝑎𝑑𝑘 + 𝑏𝑑)

Bill: H_RES_578 — 109th Congress (2005-2006)
It is about supporting the government of Romania to improve the 
standard health care and well-being of children in Romania.

YEA
R. Paul               H_RES_578
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Topic Model

TF-IPM

Experts/Algo
rithm

𝜽𝑑

𝒙𝑢

𝒂𝑑

𝑝 𝑣𝑢𝑑 = 1

For Unseen Bill 𝑑:
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Summary

• Heterogeneous Information Networks are networks 
with multiple types of objects and links

• Principles in mining heterogeneous information 
networks

• Meta-path-based mining

• Systematically form new types of relations

• Relation strength-aware mining

• Different types of relations have different strengths

• Relation semantic-aware mining

• Different types of relations need different modeling
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Q & A
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