APPLICATIONS OF MINING HETEROGENEOUS INFORMATION NETWORKS

Yizhou Sun

College of Computer and Information Science

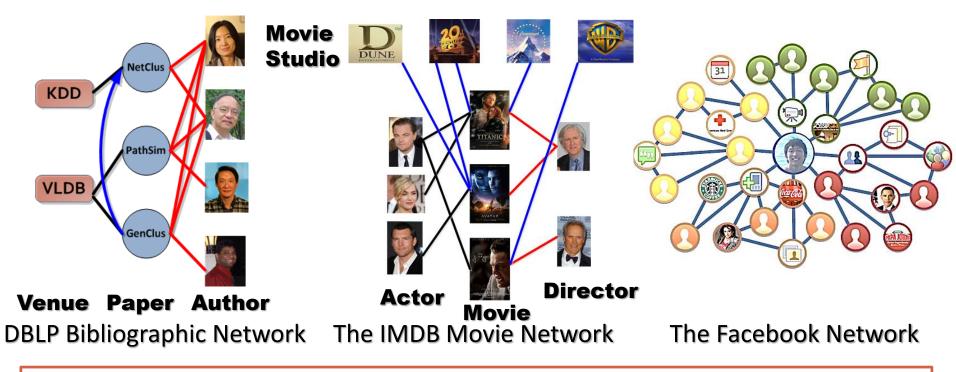
Northeastern University

yzsun@ccs.neu.edu

July 25, 2015

Heterogeneous Information Networks

Multiple object types and/or multiple link types



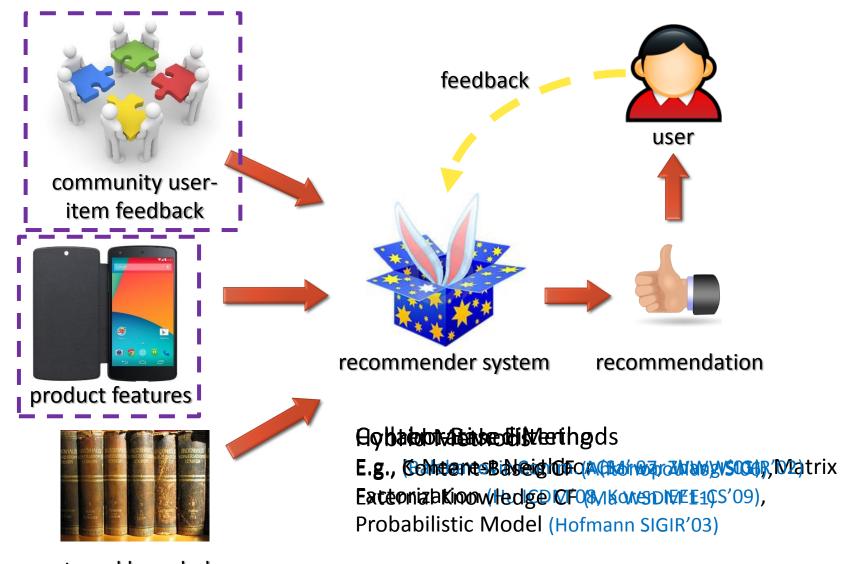
- 1. Homogeneous networks are Information loss projection of heterogeneous networks!
- 2. New problems are emerging in heterogeneous networks!

Directly Mining information richer heterogeneous networks

Outline

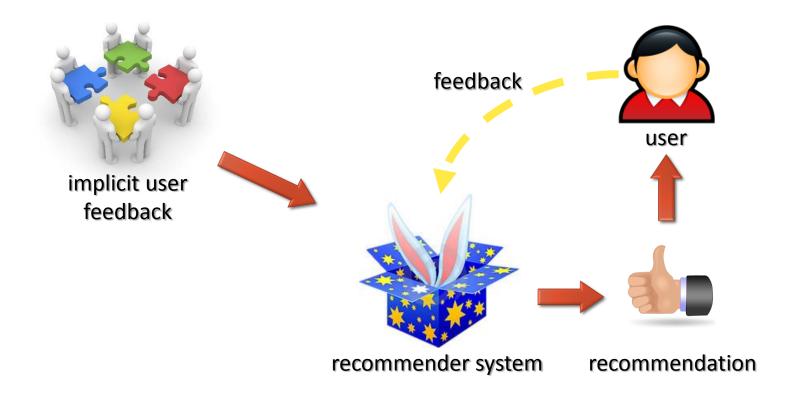
- Why Heterogeneous Information Networks?
- Entity Recommendation
- Information Diffusion
- Ideology Detection
- Summary

Recommendation Paradigm



external knowledge

Problem Definition



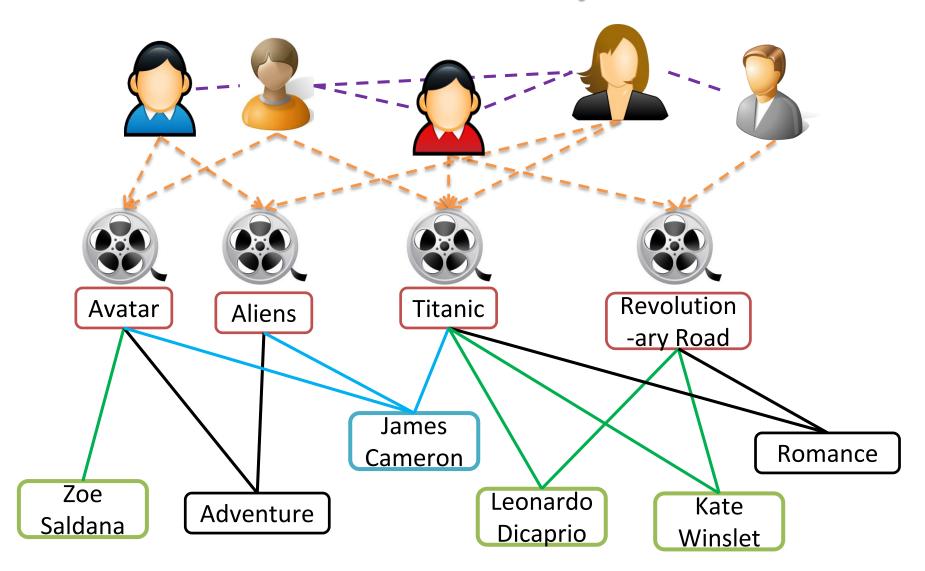
information network

hybrid collaborative filtering with information networks

Hybrid Collaborative Filtering with Networks

- Utilizing network relationship information can enhance the recommendation quality
- However, most of the previous studies only use single type of relationship between users or items (e.g., social network Ma,WSDM'11, trust relationship Ester, KDD'10, service membership Yuan, RecSys'11)

The Heterogeneous Information Network View of Recommender System

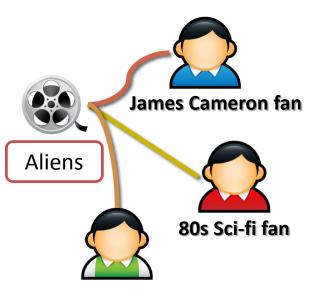




- Heterogeneous relationships complement each other
- Users and items with limited feedback can be connected to the network by different types of paths
 - Connect new users or items (cold start) in the information network

Relationship Heterogeneity Based Personalized Recommendation Models

Different users may have different behaviors or preferences



Sigourney Weaver fan

Different users may be interested in the same movie for different reasons

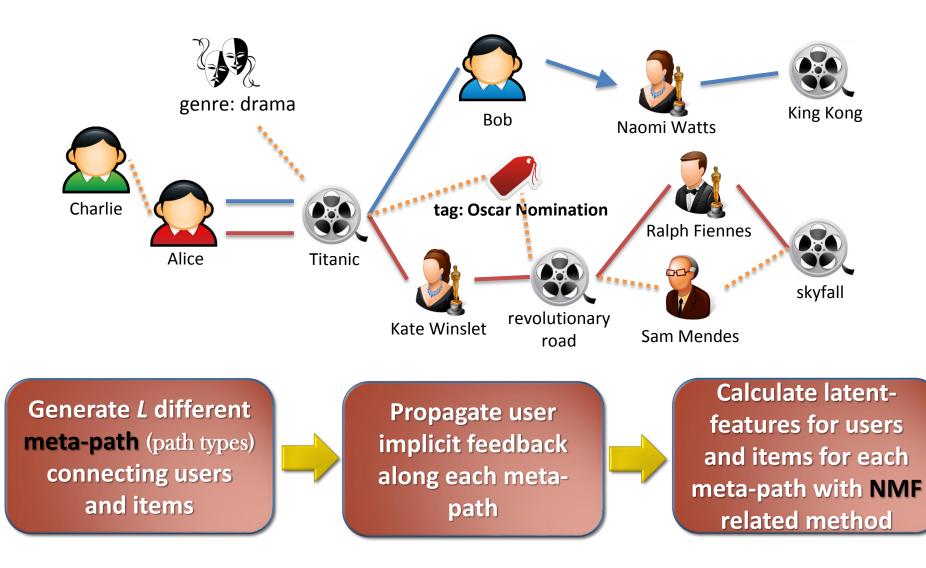
Two levels of personalization Data level

 Most recommendation methods use one model for all users and rely on personal feedback to achieve personalization

Model level

• With different entity relationships, we can learn personalized models for different users to further distinguish their differences

Preference Propagation-Based Latent Features



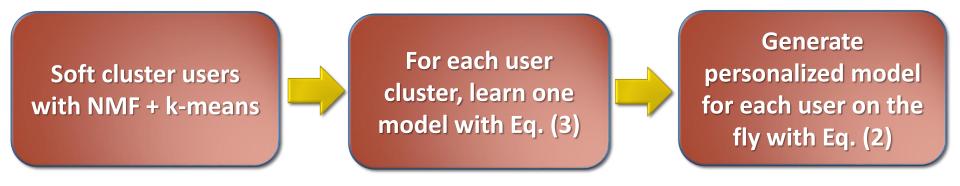
Recommendation Models

Observation 1: Different meta-paths may have different importance Global Recommendation Model features for user *i* and item *j* ranking score $|\hat{r}(u_i, e_j)| = \sum \theta_q \cdot \hat{U}_i^{(q)}$ (1)the q-th meta-path **Observation 2:** Different users may require different models Personalized Recommendation Model user-cluster similarity $\hat{r}_{p}(u_{i}, e_{j}) = \sum_{k \in I} sim(C_{k}, u_{i}) \sum_{i} \theta_{q}^{\{k\}} \cdot \hat{U}_{i}^{(q)} \hat{V}_{j}^{(q)T}$ (2)

c total soft user clusters

Parameter Estimation

- Bayesian personalized ranking (Rendle UAI'09)
- Objective function sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$. $\min_{\Theta} -\sum_{u_i \in \mathcal{U}} \sum_{(e_a > e_b) \in R_i} \ln \sigma(\hat{r}(u_i, e_a) - \hat{r}(u_i, e_b)) + \frac{\lambda}{2} \|\Theta\|_2^2 \quad (3)$ for each correctly ranked item pair i.e., u_i gave feedback to e_a but not e_b



Learning Personalized Recommendation Model

Experiment Setup

Datasets

Name	#Items	#Users	#Ratings	#Entities	#Links
IM100K	943	1360	89,626	60,905	146,013
Yelp	11,537	43,873	229,907	285,317	$570,\!634$

Comparison methods:

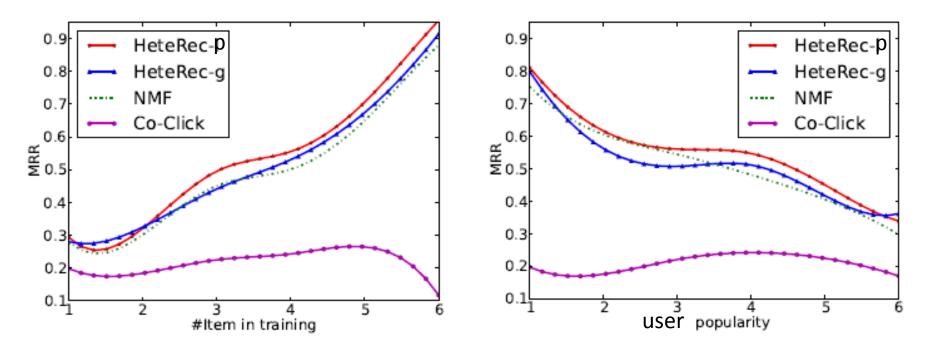
- Popularity: recommend the most popular items to users
- Co-click: conditional probabilities between items
- NMF: non-negative matrix factorization on user feedback
- Hybrid-SVM: use Rank-SVM with plain features (utilize both user feedback and information network)

Performance Comparison

Method	IM100K			Yelp				
	Prec1	Prec5	Prec10	MRR	Prec1	Prec5	Prec10	MRR
Popularity	0.0731	0.0513	0.0489	0.1923	0.00747	0.00825	0.00780	0.0228
Co-Click	0.0668	0.0558	0.0538	0.2041	0.0147	0.0126	0.01132	0.0371
NMF	0.2064	0.1661	0.1491	0.4938	0.0162	0.0131	0.0110	0.0382
Hybrid-SVM	0.2087	0.1441	0.1241	0.4493	0.0122	0.0121	0.0110	0.0337
HeteRec-g	0.2094	0.1791	0.1614	0.5249	0.0165	0.0144	0.0129	0.0422
HeteRec-l	0.2121	0.1932	0.1681	0.5530	0.0213	0.0171	0.0150	0.0513

HeteRec personalized recommendation (HeteRec-p) provides the best recommendation results

Performance under Different Scenarios



(a) Performance Change with User Feed- (b) Performance Change with User Feedback Number back Popularity

HeteRec-p consistently outperform other methods in different scenarios better recommendation results if users provide more feedback better recommendation for users who like less popular items

Ectity Recommendation in Information Networks with Implicit User Feedback

(RecSys'13, WSDM'14a)

- Propose latent representations for users and items by propagating user preferences along different meta-paths
- Employ Bayesian ranking optimization technique to correctly evaluate recommendation models
- Further improve recommendation quality by considering user differences at model level and define personalized recommendation models

• Two levels of personalization

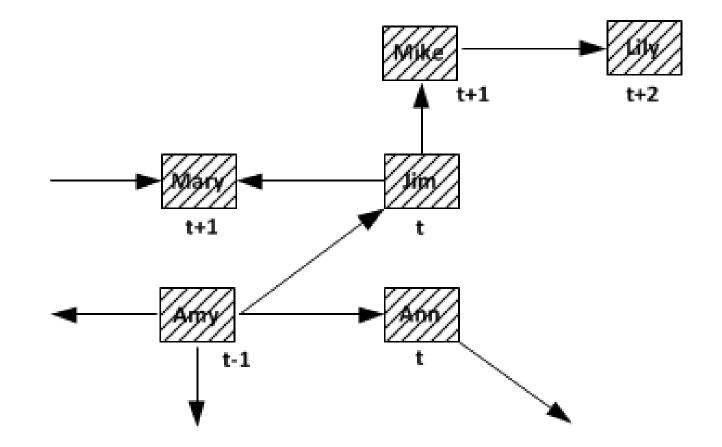
Outline

- Why Heterogeneous Information Networks?
- Entity Recommendation

- Ideology Detection
- Summary

Information Diffusion in Networks

Action of a node is triggered by the actions of their neighbors



Linear Threshold Model

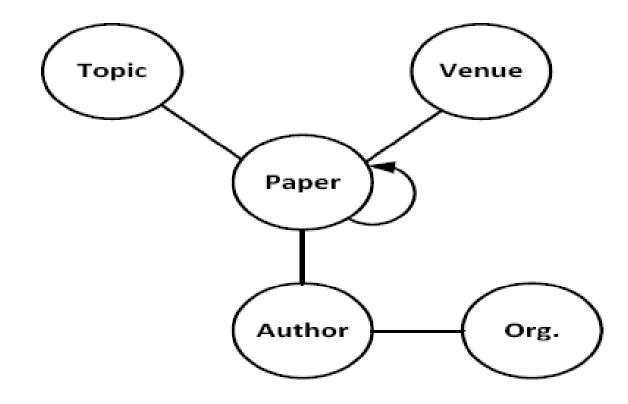
- [Granovetter, 1978]
 - If the weighted activation number of its neighbors is bigger than a pre-specified threshold θ_u , the node u is going to be activated

$$\sum_{v \in \Gamma(u)} w_{v,u} \delta(u,t) > \theta_u$$

- In other words
 - $p_u(t+1) = E[1(\sum_{v \in \Gamma(u)} w_{v,u}\delta(u,t) > \theta_u)]$

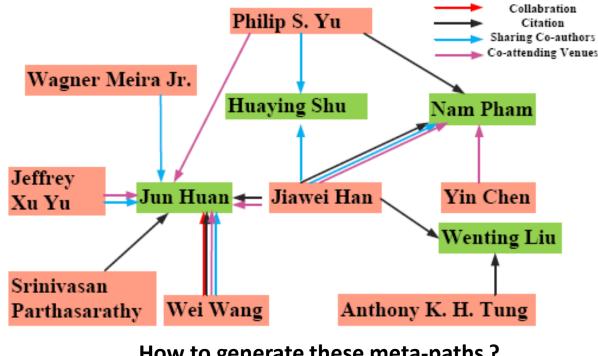
Heterogeneous Bibliographic Network

- Multiple types of objects
- Multiple types of links



Derived Multi-Relational Bibliographic Network

- Collaboration: Author-Paper-Author
- Citation: Author-Paper->Paper-Author
- Sharing Co-authors: Author-Paper-Author-Paper-Author
- Co-attending venues: Author-Paper-Venue-Paper-Author



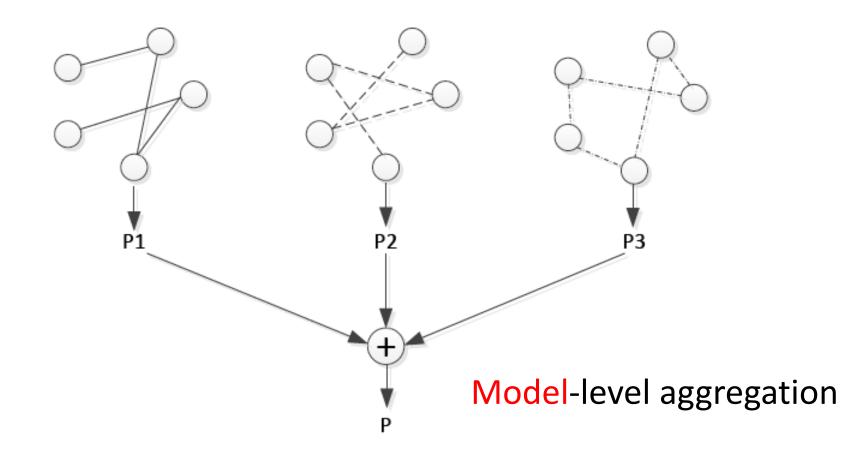
How to generate these meta-paths? PathSim: Sun et.al, VLDB'11

How Topics Are Propagated among Authors?

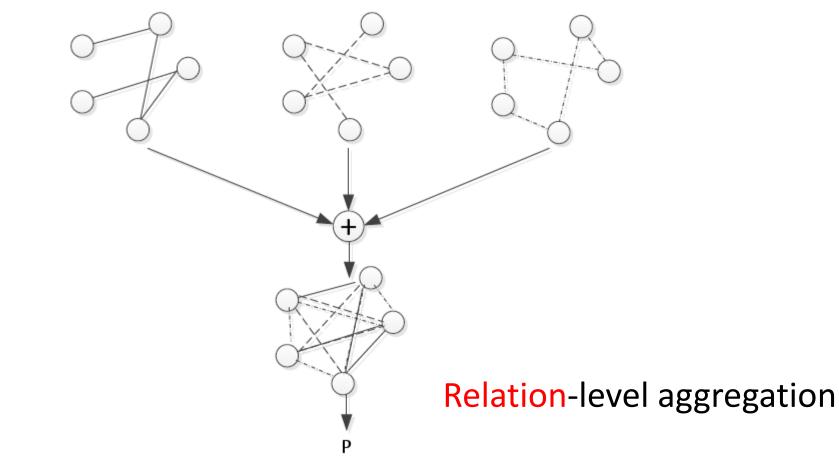
- To Apply Existing approaches
 - Select one relation between authors (say, A-P-A)
 - information loss! • Use all the relations, but ignore the relation types
- Do different relation types play different roles?
 - Need new models!

Two Assumptions for Topic Diffusion in Multi-Relational Networks

Assumption 1: Relation independent diffusion



Assumption 2: Relation interdependent diffusion



Two Models under the Two Assumptions

Two multi-relational linear threshold models

- Model 1: MLTM-M
 - Model-level aggregation
- Model 2: MLTM-R
 - Relation-level aggregation

MLTM-M

For each relation type k

- The activation probability for object i at time t+1:
- The collective model
 - The final activation probability for object i is an aggregation over all relation types

$$p_i^{(k)}(t+1) = \frac{\sum_{j \in \Gamma(i,k)} w_{ij}^{(k)} \delta(j,t)}{\sum_{j \in \Gamma(i,k)} w_{ij}^{(k)}}$$
$$p_i(t+1) = \frac{e^{\sum_k \beta_k p_i^{(k)}(t+1) + \beta_0}}{1 + e^{\sum_k \beta_k p_i^{(k)}(t+1) + \beta_0}}$$

Properties of MLTM-M

PROPERTY 1. Let $p_i^{(-k)}(t+1)$ be the activation probability of *i* at timestamp t + 1 without relation type k, under MLTM-M, we have

- if $\beta_k > 0$, then $p_i(t+1) > p_i^{(-k)}(t+1)$, that is, a relation type with positive diffusion power will increase the activation probability of *i*;
- if $\beta_k = 0$, then $p_i(t+1) = p_i^{(-k)}(t+1)$, that is, a relation type with no diffusion power (such as noise) will not change the activation probability of *i*; and
- if $\beta_k < 0$, then $p_i(t+1) < p_i^{(-k)}(t+1)$, that is, a relation type with negative diffusion power will decrease the activation probability of *i*.

MLTM-R

- Aggregate multi-relational network with different weights
 - Treat the activation as in a single-relational network

$$p_i(t+1) = \frac{\sum_k \beta_k \sum_{j \in \Gamma(i,k)} w_{ij}^{(k)} \delta(j,t) + \beta_0 \sum_j \delta(j,t)}{\sum_k \beta_k \sum_{j \in \Gamma(i,k)} w_{ij}^{(k)} + \beta_0 N}$$

To make sure the activation probability non-negative, weights $\beta's$ are required non-negative

Properties of MLTM-R

PROPERTY 2. Let $p_i^{(-k)}(t+1)$ be the activation probability of *i* at timestamp t + 1 without relation type k, under MLTM-R, we have

- $\min(p_i^{(k)}(t+1), p_i^{(-k)}(t+1)) \le p_i(t+1) \le \max(p_i^{(k)}(t+1), p_i^{(-k)}(t+1)).$
- when $\beta_k \to 0, p_i(t+1) \to p_i^{(-k)}(t+1)$; and
- when $\beta_k \to \infty$, $p_i(t+1) \to p_i^{(k)}(t+1)$.

How to Evaluate the Two Models?

- Test on the real action log on multiple topics!
 - Action $log: \{ < u_i, t_i > \}$
- Diffusion model learning from action log
 - MLE estimation over $\beta's$

Two Real Datasets

DBLP

- Computer Science
- Relation types
 - APA, AP->PA, APAPA, APVPA

• APS

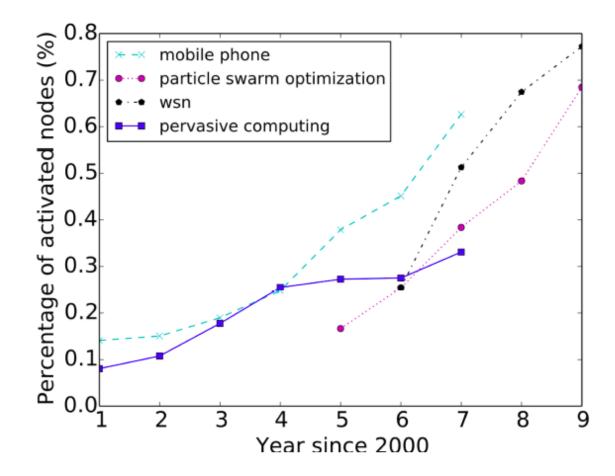
- Physics
- Relation types
 - APA, AP->PA, APAPA, APOPA

Statistics	Count
Authors	916,988
Papers	1,572,278
Venues	6,713
Author-Paper	4,135,188
Citations	2,083,947

Statistics	Count
Authors	323,675
Papers	463,348
Organizations ³	41,411
Author-Paper	2,471,474
Citations	4,710,547

Topics Selected

Select topics with increasing trends



Evaluation Methods

Global Prediction

- How many authors are activated at t+1
- Error rate = 1/2(predicted#/true# + true#/predicted#)-1

Local Prediction

- Which author is likely to be activated at t+1
- AUPR (Area under Precision-Recall Curve)

Global Prediction

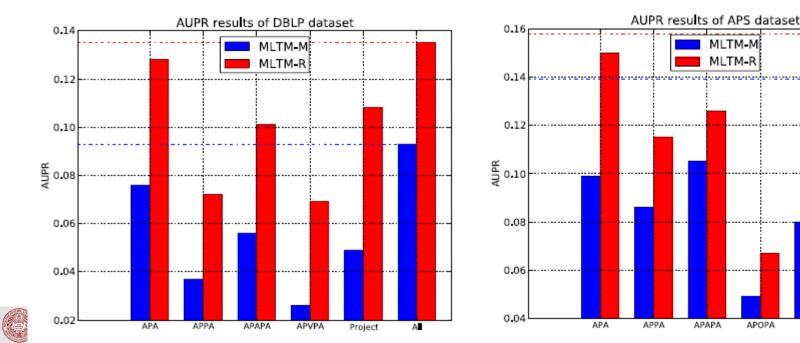
Dataset	Model	APA	APPA	APAPA	APVAP	Full
DBLP	Homo-	0.654	0.287	1.005	1.269	N/A
	MH-	0.033	0.04	0.034	0.041	0.031
	RH-	0.072	0.07	0.092	0.128	0.125
Dataset	Model	APA	APPA	APAPA	APOAP	Full
APS	Homo-	0.249	0.398	0.107	0.144	N/A
	MH-	0.045	0.052	0.039	0.068	0.052
	RH-	0.073	0.082	0.076	0.079	0.11

Local Prediction - AUPR

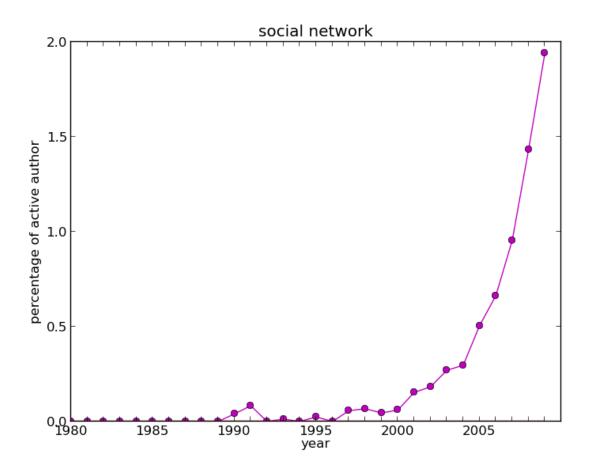
- 1: Different Relation Play Different Roles in Diffusion Process
- 2: Relation-Level Aggregation is better than Model-Level Aggregation

A

Project



Case Study



Prediction Results on "social network" Diffusion

	1		AUPR	1	
Year	MLTM-M	APA	APPA	APAPA	APVPA
2006	0.0708	0.0538	0.0288	0.0382	0.012
2007	0.0696	0.0596	0.0293	0.0442	0.0187
2008	0.0861	0.0767	0.0394	0.0549	0.0231
	held-out logL				
Year	MLTM-M	APA	APPA	APAPA	APVPA
2006	-3436.8302	-3529.7381	-3750.592	-3605.3715	-3899.8318
2007	-5723.0076	-5881.2261	-6248.871	-5973.8478	-6368.6163
2008	-7663.0198	-7933.8971	-8506.7911	-8088.0607	-8990.3446
	global				
Year	MLTM-M	APA	APPA	APAPA	APVPA
2006	0.0366	0.0413	0.0477	0.0471	0.0547
2007	0.0337	0.0574	0.0942	0.0587	0.091
2008	0.0022	0.0169	0.0295	0.0116	0.0008

	L	L	AUPR	L	
Year	MLTM-R	APA	APPA	APAPA	APVPA
2006	0.0996	0.0865	0.0826	0.0695	0.0396
2007	0.1157	0.1026	0.0912	0.0802	0.0608
2008	0.1498	0.1433	0.1088	0.1068	0.0492
	held-out logL				
Year	MLTM-R	APA	APPA	APAPA	APVPA
2006	-3154.8047	-3349.3748	-3367.2633	-3391.4317	-3457.8147
2007	-5182.5405	-5451.7943	-5527.3942	-5499.6015	-5701.3318
2008	-7151.585 3	-7306.9863	-7597.4606	-7503.8617	-8137.539
	global				
Year	MLTM-R	APA	APPA	APAPA	APVPA
2006	0.0227	0.0052	0.0018	0.0024	0.0196
2007	0.0128	0.0112	0.0005	0.0001	0.0091
2008	0.0529	0.002	0.0232	0.0326	0.0802

Year	MLTM-M
2006	0.0708
2007	0.0696
2008	0.0861
	_
Year	MLTM-M
2006	-3436.8302
2007	-5723.0076
2008	-7663.0198
Year	MLTM-M
2006	0.0366
2007	0.0337
2008	0.0022

WIN!

Year	MLTM-R
2006	0.0996
2007	0.1157
2008	0.1498
	11

Year	MLTM-R
2006	-3154.8047
2007	-5182.5405
2008	-7151.585 3

Year	MLTM-R
2006	0.0227
2007	0.0128
2008	0.0529

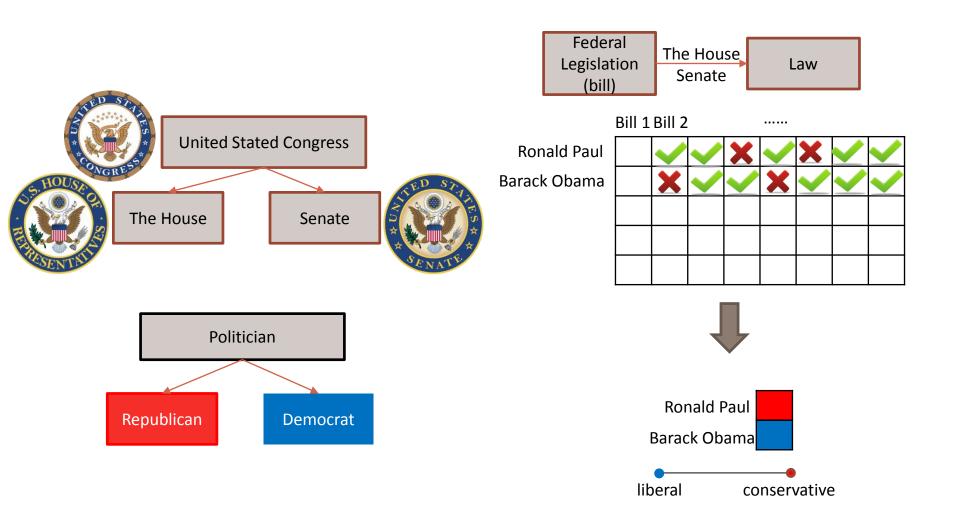
Outline

- Why Heterogeneous Information Networks?
- Entity Recommendation
- Information Diffusion
- Ideology Detection

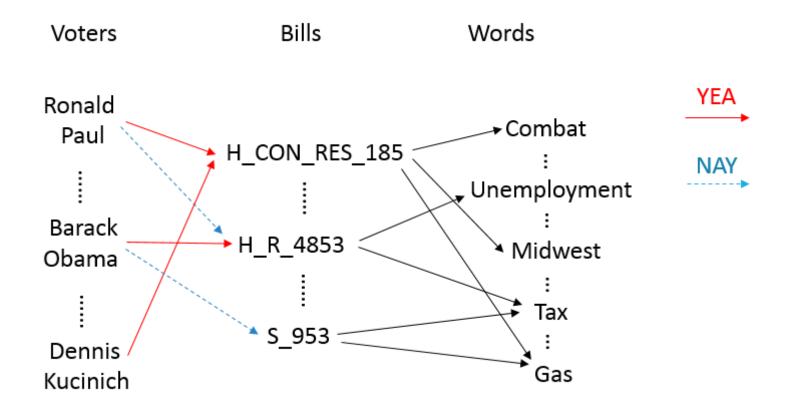
Summary

 Topic-Factorized Ideal Point Estimation Model for Legislative Voting Network (KDD'14, Gu, Sun et al.)

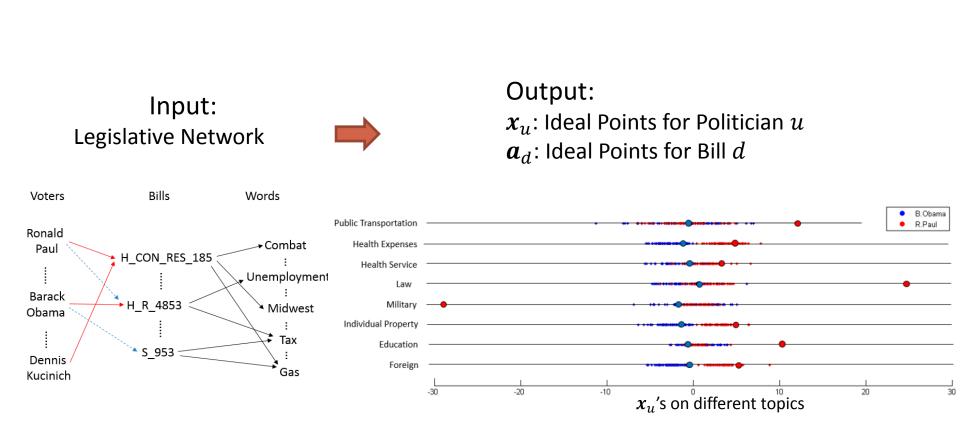
Background



Legislative Voting Network



Problem Definition



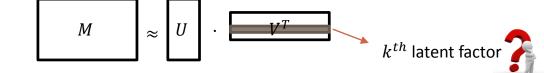
Existing Work

- 1-dimensional ideal point model (Poole and Rosenthal, 1985; Gerrish and Blei, 2011)
- High-dimensional ideal point model (Poole and Rosenthal, 1997)
- Issue-adjusted ideal point model (Gerrish and Blei, 2012)

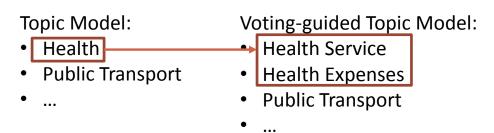
Motivations

• Voters have different positions on different topics.

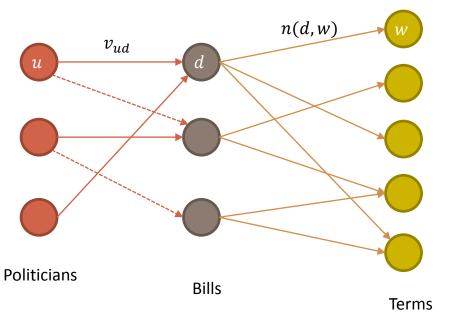
 Traditional matrix factorization method cannot give the meanings for each dimension.



• Topics of bills can influence politician's voting, and the voting behavior can better interpret the topics of bills as well.



Topic-Factorized IPM



Heterogeneous Voting Network

Entities:

- Politicians
- Bills
- Terms

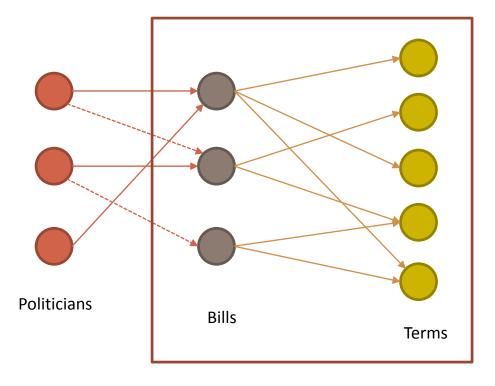
Links:

- (*P*, *B*)
- (B,T)

Parameters to maximize the likelihood of generating two types of links:

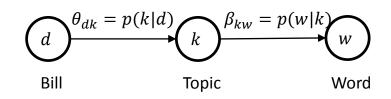
- Ideal points for politicians
- Ideal points for bills
- Topic models

Text Part



Text Part

 We model the probability of each word in each document as a mixture of categorical distributions, as in PLSA (Hofmann, 1999) and LDA (Blei et al., 2003)

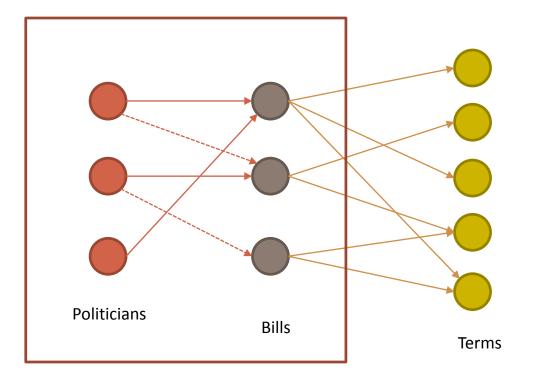


$$\boldsymbol{w}_d = \left(n(d, 1), n(d, 2), \dots, n(d, N_w)\right)$$

$$p(\boldsymbol{w}_d | \boldsymbol{\theta}, \boldsymbol{\beta}) \propto \prod_{w} (\sum_{k} \theta_{dk} \beta_{kw})^{n(d,w)}$$

$$p(\boldsymbol{W}|\boldsymbol{\theta},\boldsymbol{\beta}) \propto \prod_{d} \prod_{w} (\sum_{k} \theta_{dk} \beta_{kw})^{n(d,w)}$$

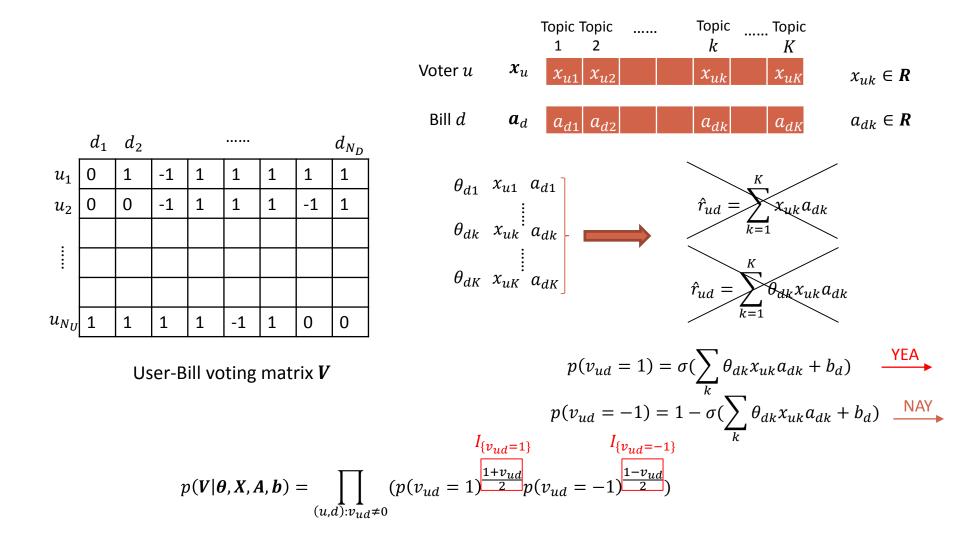
Voting Part



Intuitions:

- The more similar of the ideal points of *u* and *d*, the higher probability of "YEA" link
- The higher portion a bill belongs to topic k, the higher weight of ideal points on topic k

Voting Part



Combining Two Parts Together

 The final objective function is a linear combination of the two average log-likelihood functions over the word links and voting links.

$$J(\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{X}, \boldsymbol{A}, \boldsymbol{b}) = (1 - \lambda) \frac{\sum_{d, w} n(d, w) \log(\sum_{k} \theta_{dk} \beta_{kw})}{N_{F}} + \lambda \frac{\sum_{(u, d): v_{ud} \neq 0} (\frac{1 + v_{ud}}{2} \log p(v_{ud} = 1) + \frac{1 - v_{ud}}{2} \log p(v_{ud} = -1))}{N_{V}}$$

s.t.
$$0 \le \theta_{dk} \le 1, \qquad \sum_{k} \theta_{dk} = 1 \qquad \text{and} \qquad 0 \le \beta_{kw} \le 1, \qquad \sum_{w} \beta_{kw} = 1$$

 We also add an l₂ regularization term to A and X to reduce over-fitting.

$$J(\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{X}, \boldsymbol{A}, \boldsymbol{b}) = (1 - \lambda) \frac{\sum_{d, w} n(d, w) \log(\sum_{k} \theta_{dk} \beta_{kw})}{N_{F}} + \lambda \frac{\sum_{(u, d): v_{ud} \neq 0} (\frac{1 + v_{ud}}{2} \log p(v_{ud} = 1) + \frac{1 - v_{ud}}{2} \log p(v_{ud} = -1))}{N_{V}}$$
$$-\frac{1}{2\sigma^{2}} (\sum_{u} ||\boldsymbol{x}_{u}||_{2}^{2} + \sum_{d} ||\boldsymbol{a}_{d}||_{2}^{2})$$

Learning Algorithm

- An iterative algorithm where ideal points related parameters (X, A, b) and topic model related parameters (θ, β) enhance each other.
 - Step 1: Update *X*, *A*, *b* given θ , β
 - Gradient descent
 - Step 2: Update θ , β given X, A, b
 - Follow the idea of expectation-maximization (EM) algorithm: maximize a lower bound of the objective function in each iteration

$$\sum_{d,w} n(d,w) \log \left(\sum_{k} \theta_{dk} \beta_{kw}\right)$$
$$= \sum_{d,w} n(d,w) \log \left(\sum_{k} p(k|d,w) \frac{\theta_{dk} \beta_{kw}}{p(k|d,w)}\right)$$
$$\geq \sum_{d,w} n(d,w) \sum_{k} p(k|d,w) \log \frac{\theta_{dk} \beta_{kw}}{p(k|d,w)}$$
$$= \sum_{d,w} n(d,w) \sum_{k} p(k|d,w) \log \theta_{dk} \beta_{kw} - c$$

Learning Algorithm

• Update θ : A nonlinear constrained optimization problem.

Remove the constraints by a logistic function based transformation:

$$\theta_{dk} = \begin{bmatrix} \frac{e^{\mu_{dk}}}{1 + \sum_{k'=1}^{K-1} e^{\mu_{dk'}}} & \text{if } 1 \le k \le K - 1 \\ \frac{1}{1 + \sum_{k'=1}^{K-1} e^{\mu_{dk'}}} & \text{if } k = K \end{bmatrix}$$

and update μ_{dk} using gradient descent.

• Update β :

Since β only appears in the topic model part, we use the same updating rule as in PLSA:

$$\beta_{kw}^{new} = \frac{\sum_{d} n(d, w) p(k|d, w)}{\sum_{d, w} n(d, w) p(k|d, w)} \qquad \text{where} \quad p(k|d, w) = \frac{\theta_{dk} \beta_{kw}^{old}}{\sum_{k'} \theta_{dk'} \beta_{k'w}^{old}}$$

Data Description

Dataset:

- U.S. House and Senate roll call data in the years between 1990 and 2013.*
 - 1,540 legislators
 - 7,162 bills
 - 2,780,453 votes (80% are "YEA")
- Keep the latest version of a bill if there are multiple versions.
- Randomly select 90% of the votes as training and 10% as testing.

^{*} Downloaded from http://thomas.loc.gov/home/rollcallvotes.html

Evaluation Measures

 Root mean square error (RMSE) between the predicted vote score and the ground truth

$$RMSE = \sqrt{\frac{\sum_{(u,d): v_{ud} \neq 0} \left(\frac{1+v_{ud}}{2} - p(v_{ud}=1)\right)^2}{N_V}}$$

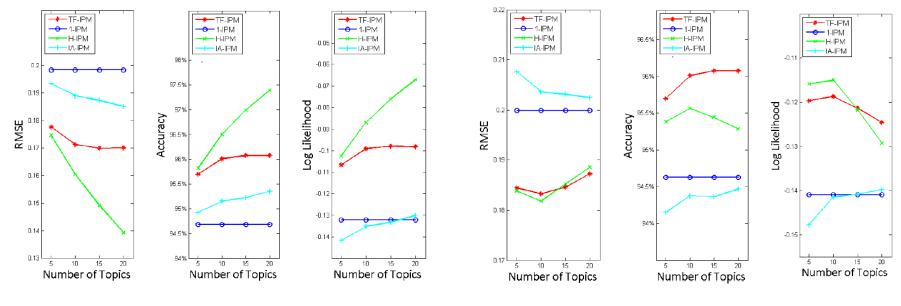
 Accuracy of correctly predicted votes (using 0.5 as a threshold for the predicted accuracy)

Accuracy = $\frac{\sum_{u,d} (I_{\{p(v_{ud}=1)>0.5 \&\& v_{ud}=1\}} + I_{\{p(v_{ud}=1)<0.5 \&\& v_{ud}=-1\}})}{N_V}$

Average log-likelihood of the voting link

$$\text{AvelogL} = \frac{\sum_{(u,d): v_{ud} \neq 0} \left(\frac{1+v_{ud}}{2} \log p(v_{ud}=1) + \frac{1-v_{ud}}{2} \log p(v_{ud}=-1)\right)}{N_V}$$

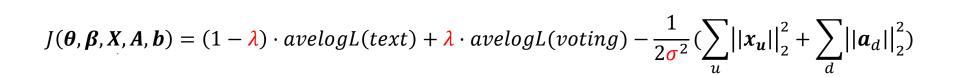
Experimental Results

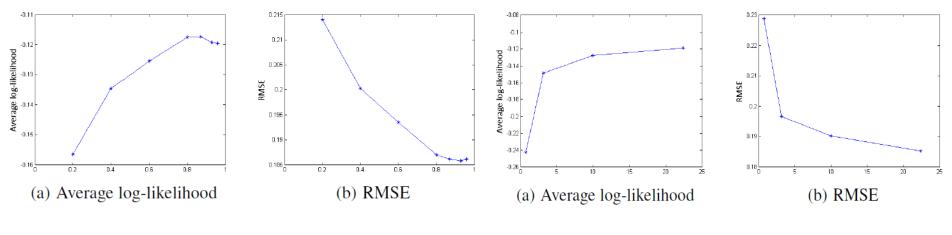


Training Data set

Testing Data set

Parameter Study



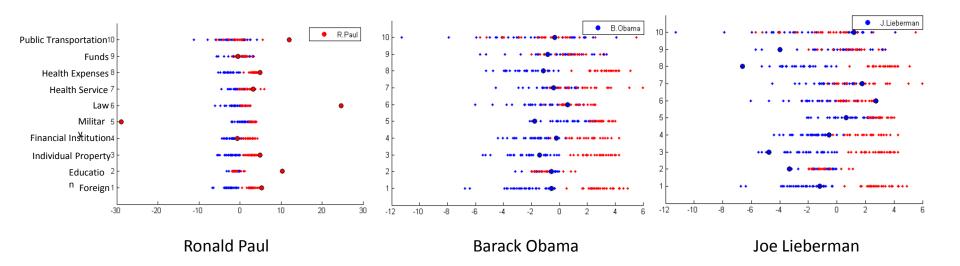


Parameter study on λ

Parameter study on σ (regularization coefficient)

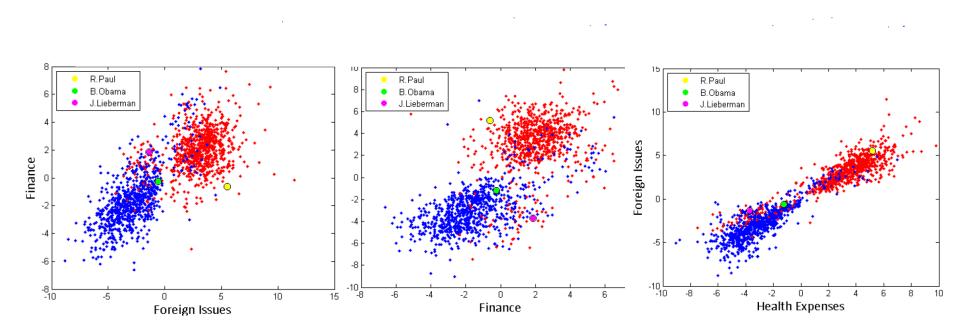
Case Studies

- Ideal points for three famous politicians: (Republican, Democrat)
 - Ronald Paul (R), Barack Obama (D), Joe Lieberman (D)



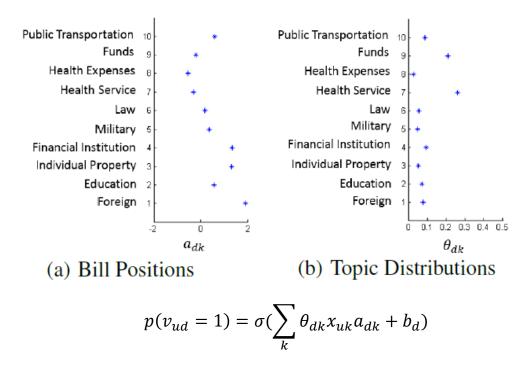
Case Studies

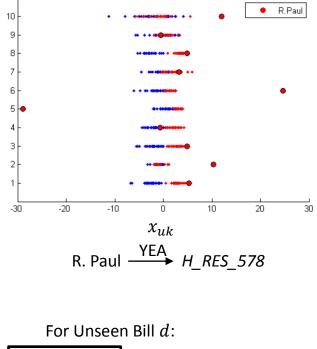
Scatter plots over selected dimensions: (Republican, Democrat)



Case Studies

Bill: *H_RES_578* — **109th Congress (2005-2006)** It is about supporting the government of Romania to improve the standard health care and well-being of children in Romania.





Topic Model
$$\boldsymbol{\theta}_d$$
TF-IPM \boldsymbol{x}_u Experts/Algo
rithm \boldsymbol{a}_d

Outline

- Why Heterogeneous Information Networks?
- Entity Recommendation
- Information Diffusion
- Ideology Detection

Summary

- Heterogeneous Information Networks are networks with multiple types of objects and links
- Principles in mining heterogeneous information networks
 - Meta-path-based mining
 - Systematically form new types of relations
 - Relation strength-aware mining
 - Different types of relations have different strengths
 - Relation semantic-aware mining
 - Different types of relations need different modeling

THANK YOU!

